-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenergy.cpp
219 lines (175 loc) · 5.39 KB
/
energy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#include <iostream>
#include <cmath>
#include "cpgplot.h"
using namespace std;
// Acceleration functions:
float xacceleration (float G, float x1, float y1, float x2, float y2, float m1)
{
float r, r3, xdistance, ydistance;
xdistance = x2-x1;
ydistance = y2-y1;
r = sqrt(xdistance*xdistance+ydistance*ydistance);
return -(G*m1)*xdistance/r/r/r;
}
float yacceleration (float G, float x1, float y1, float x2, float y2, float m1)
{
float r, r3, xdistance, ydistance;
xdistance = x2-x1;
ydistance = y2-y1;
r = sqrt(xdistance*xdistance+ydistance*ydistance);
return -(G*m1)*ydistance/r/r/r;
}
float Uenergy (float G, float m1, float m2, float x1, float x2, float y1, float y2)
{
float r, xdistance, ydistance;
xdistance = x2-x1;
ydistance = y2-y1;
r = sqrt(xdistance*xdistance+ydistance*ydistance);
return ((-G*m1)/r)*m2;
}
int main ()
{
// Declarations:
int nplanet = 9; // number of planets
const float G = 6.67e-11; // G
float x[nplanet], y[nplanet], vx[nplanet], vy[nplanet], m[nplanet]; // arrays for position, velocity, and mass
float r, r3, ax, ay;
float t=0;
int nintervals = 10000;
float dt = 5.203e9/nintervals;
float xearth[nintervals+1], yearth[nintervals+1], xsun[nintervals+1], ysun[nintervals+1],xjupiter[nintervals+1], yjupiter[nintervals+1];
float xmerc[nintervals+1], ymerc[nintervals+1], xven[nintervals+1], yven[nintervals+1], xmars[nintervals+1], ymars[nintervals+1], xsat[nintervals+1], ysat[nintervals+1], xuran[nintervals+1], yuran[nintervals+1], xnep[nintervals+1], ynep[nintervals+1];
int istep,splanet,oplanet; // splanet = source planet, oplanet = orbiting planet
float v[nplanet], KEstep[nintervals+1], KEtotal, PEtotal, PEstep[nintervals+1], Etotal[nintervals+1];
float momentum[nintervals+1], Ptotal, Px, Py;
float time[nintervals+1];
// Setting up plot:
// Open a plot window
if (!cpgopen("/XWINDOW")) return 1;
// Set-up plot axes
cpgenv(0,5.3e9,2e31,4e31,0,1);
// Label axes
cpglab("Time", "Linear Momentum", "Total Linear Momentum of Solar System");
// Initilize values:
// Sun = element 0
x[0] = 0;
y[0] = 0;
vx[0] = 0;
vy [0] = 0;
m[0] = 1.99e30;
// Mercury = element 1
x[1] = 68.8e9;
y[1] = 0;
vx[1] = 0;
vy[1] = 47.9e3;
m[1] = 3.285e23;
// Venus = element 2
x[2] = 108.26e9;
y[2] = 0;
vx[2] = 0;
vy[2] = 35e3;
m[2] = 3.285e23;
// Earth = element 3
x[3] = 1.4787e11;
y[3] = 0;
vx[3] = 0;
vy[3] = 30e3;
m[3] = 4.87e24;
// Mars = 4
x[4] = 237.85e9;
y[4] = 0;
vx[4] = 0;
vy[4] = 24.1e3;
m[4] = 6.39e23;
// Jupiter = element 5
x[5] = 748.45e9;
y[5] = 0;
vx[5] = 0;
vy[5] = 13.1e3;
m[5] = 1.898e27;
// Saturn = 6
x[6] = 1.48e12;
y[6] = 0;
vx[6] = 0;
vy[6] = 9.7e3;
m[6] = 5.683e26;
// Uranus = 7
x[7] = 2.95e12;
y[7] = 0;
vx[7] = 0;
vy[7] = 6.8e3;
m[7] = 8.681e25;
// Neptune = 8
x[8] = 4.47e12;
y[8] = 0;
vx[8] = 0;
vy[8] = 5.4e3;
m[8] = 1.024e26;
time[0] = t;
// Plotting planets
for (istep=0;istep<=nintervals;istep++) {
xsun[istep] = x[0];
ysun[istep] = y[0];
xmerc[istep] = x[1];
ymerc[istep] = y[1];
xven[istep] = x[2];
yven[istep] = y[2];
// Reset total energy/momentum for each step
KEtotal = 0;
PEtotal = 0;
Px = 0;
Py=0;
// Calculating acceleration of planets
for (oplanet=0; oplanet<nplanet;oplanet++) {
ax = 0;
ay = 0;
for (splanet=0; splanet<nplanet; splanet++) {
if (oplanet==splanet) continue;
ax = ax + xacceleration (G,x[splanet],y[splanet],x[oplanet],y[oplanet],m[splanet]);
ay = ay + yacceleration (G,x[splanet],y[splanet],x[oplanet],y[oplanet],m[splanet]);
// Calculates sum of acceleration from each planet on orbiting planet
}
vx[oplanet] = vx[oplanet]+ax*(dt/2);
vy[oplanet] = vy[oplanet]+ay*(dt/2);
x[oplanet] = x[oplanet]+vx[oplanet]*dt;
y[oplanet] = y[oplanet]+vy[oplanet]*dt;
ax = 0;
ay = 0;
for (splanet=0; splanet<nplanet; splanet++) {
if (oplanet==splanet) continue;
ax = ax + xacceleration (G,x[splanet],y[splanet],x[oplanet],y[oplanet],m[splanet]);
ay = ay + yacceleration (G,x[splanet],y[splanet],x[oplanet],y[oplanet],m[splanet]);
}
vx[oplanet] = vx[oplanet]+ax*(dt/2);
vy[oplanet] = vy[oplanet]+ay*(dt/2);
// Calculate kinetic energy
v[oplanet] = sqrt(vx[oplanet]*vx[oplanet] + vy[oplanet]*vy[oplanet]);
KEtotal = KEtotal+ (.5*m[oplanet]*v[oplanet]*v[oplanet]);
// Calculate gravitational potential energy
for (splanet=0; splanet<nplanet; splanet++) {
if (splanet<=oplanet) continue;
PEtotal = PEtotal + Uenergy(G, m[oplanet], m[splanet], x[oplanet], x[splanet], y[oplanet], y[splanet]);
}
// Calculate linear momentum
Px = Px + m[oplanet]*vx[oplanet];
Py = Py + m[oplanet]*vy[oplanet];
}
// Ensure energy is conserved at each step
KEstep[istep] = KEtotal;
PEstep[istep] = PEtotal;
Etotal[istep] = KEstep[istep]+PEstep[istep];
Px = Px;
Py = Py;
Ptotal = Px+Py;
momentum[istep] = Ptotal;
//cout << "Total energy = " << Etotal[istep] << "\n";
//cout << "momentum = " << momentum[istep] << "\n";
t = t+dt;
time[istep] = t;
}
//cpgsci(4);
// cpgline(nintervals+1,time,Etotal);
cpgsci(5);
cpgline(nintervals+1,time,momentum);
cpgclos();
}