-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlinearblender.py
289 lines (244 loc) · 11.8 KB
/
linearblender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# -*- coding: utf-8 -*-
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.metrics import roc_auc_score,r2_score,f1_score,matthews_corrcoef,mean_absolute_error,mean_squared_error,log_loss,precision_score,recall_score
import numpy as np
class linearblender(BaseEstimator, ClassifierMixin):
def __init__(self,
task="regression",
metric=None,
n_classes=None,
n_iter=5,
precision="simple",
verbose=0 ):
assert task in ['regression', 'classification']
assert metric in [None, 'auc','r2','mae','rmse','logloss']
if type(metric)==type(None):
if task=='regression':
metric='rmse'
else :
metric='logloss'
assert type(n_classes) is type(None) or type(n_classes) is int
if type(n_classes) != type(None):
assert n_classes>1
assert type(n_iter) is int and n_iter>0
assert type(verbose) is int
assert precision in ['simple', 'medium','exhaustive']
assert metric in [ 'auc','r2','f1','matthews','mae','rmse','logloss','precision','recall']
if metric in [ 'auc','f1','matthews','logloss','precision','recall'] and task!="classification":
raise Exception (" the metric selected")
self.metric=metric
## the metric lists that uses 'predict' when computed the metric
self.predict_metrics=['r2','f1','matthews','mae','rmse','precision','recall']
## the metric lists that uses 'predict_proba' when computed the metric
self.predict_proba_metrics=['auc','logloss']
# metrics which the higher they are. the better it is
self.high_is_good=[ 'auc','r2','f1','matthews','precision','recall']
# metrics which the lower they are. the better it is
self.low_is_good=[ 'mae','rmse','logloss']
self.n_models=0
self.metric=metric
self.verbose= verbose
self.precision= precision
self.n_classes= n_classes
self.task=task
self.n_iter=n_iter
self.weights=[]
self.increment=0.2
self.rounds=5
if precision=="medium":
self.increment=0.1
self.rounds=10
elif precision=="exhaustive":
self.increment=0.05
self.rounds=20
"""
actual: actual values
pred : predicted values
return: the metric value
"""
def compute_metric(self,actual, pred):
if self.metric=='auc':
return roc_auc_score(actual, pred)
elif self.metric=='r2':
return r2_score(actual, pred)
elif self.metric=='f1':
return f1_score(actual, pred)
elif self.metric=='matthews':
return matthews_corrcoef(actual, pred)
elif self.metric=='mae':
return mean_absolute_error(actual, pred)
elif self.metric=='mae':
return mean_absolute_error(actual, pred)
elif self.metric=='rmse':
return np.sqrt(mean_squared_error(actual, pred) )
elif self.metric=='logloss':
return log_loss(actual, pred)
elif self.metric=='precision':
return precision_score(actual, pred)
elif self.metric=='recall':
return recall_score(actual, pred)
else :
raise(" your metric is not recognised")
def scale_weights(self, w ):
sum_w=sum(w)
if sum_w!=0.0:
ws=[wei/sum_w for wei in w]
else :
ws=w[:]
return ws
"""
X : 2-d numpy array
y : 1-d numpy array
"""
def fit(self, X, y ):
if type(X) == type(None) or (not type(X) is np.ndarray and isinstance(X[0], list)==False):
raise Exception (" X needs to be a numpy array or a 2d list")
if not type(y) is np.ndarray and not type(y) is list :
raise Exception (" y needs to be a numpy array or list")
if not isinstance(X[0], list):
X=X.tolist()
# determine number of models
if self.task=="regression":
self.n_models=len(X[0])
elif self.task=="classification":
columns_shape=len(X[0])
if self.n_classes==2:
self.n_models=columns_shape
elif self.n_classes>2:
remaining=columns_shape%self.n_classes
if remaining!=0:
raise Exception (" dividing columns with n_classes,leaves a remainder...")
else :
self.n_models=columns_shape/self.n_classes
if self.n_models<1:
raise Exception ("models needs to be 1 or more")
self.weights=[0.0 for k in range (self.n_models)]
avg_metric=-9999999.99
if self.metric in self.low_is_good:
avg_metric=9999999.99
for e in range ( self.n_iter):
if self.verbose>1:
print (" Linear blending iter: %d" % (e+1))
for c in range (self.n_models):
temp_weights=[ k for k in self.weights]
if self.verbose>1:
print (" Linear blending iter %d examining model %d : " % (e+1,c))
for r in range (self.rounds):
if self.verbose>1:
print (" Linear blending iter %d examining model %d weight %f : " % (e+1,c,(r+1)* self.increment))
temp_weights[c]=(r+1)* self.increment
temp_weights_scaled=self.scale_weights(temp_weights)
if self.task=="regression" or self.n_classes<=2:
preds=[0.0 for k in range (len(X))]
for a in range (len(X)):
for jj in range (len(temp_weights_scaled)):
preds[a]+=X[a][jj]*temp_weights_scaled[jj]
else :
preds=[ [0.0 for ss in range(self.n_classes)] for k in range (len(X))]
#print (temp_weights_scaled)
for a in range (len(X)):
for jj in range (len(temp_weights_scaled)):
for jjj in range (self.n_classes):
preds[a][jjj]+=X[a][jj*self.n_classes+ jjj]*temp_weights_scaled[jj]
bestf=0.0
for asd in range(self.n_classes):
bestf+=preds[a][asd]
for asd in range(self.n_classes):
preds[a][asd]/=bestf
this_metric=self.compute_metric(y,preds)
if self.metric in self.low_is_good and this_metric<avg_metric:
if self.verbose>0:
print (" Linear blending iter %d examining model %d weight %f , metric %s improved from %f to %f : " % (e+1,c,(r+1)* self.increment,self.metric,avg_metric,this_metric ))
avg_metric=this_metric
self.weights[c]=(r+1)* self.increment
elif self.metric in self.high_is_good and this_metric>avg_metric:
if self.verbose>0:
print (" Linear blending iter %d examining model %d weight %f , metric %s improved from %f to %f : " % (e+1,c,(r+1)* self.increment,self.metric,avg_metric,this_metric ) )
avg_metric=this_metric
self.weights[c]=(r+1)* self.increment
else :
if self.verbose>1:
print (" Linear blending iter %d examining model %d weight %f , metric %s There is NO improvement from %f (to %f) : " % (e+1,c,(r+1)* self.increment,self.metric,avg_metric,this_metric ) )
self.weights=self.scale_weights(self.weights)
if self.verbose>0:
print ("final weights, ",self.weights )
return self
"""
X : 2-d numpy array
"""
def predict(self, X):
if type(X) == type(None) or (not type(X) is np.ndarray and isinstance(X[0], list)==False):
raise Exception (" X needs to be a numpy array or a 2d list")
if len(self.weights)<1:
raise Exception (" fit method needs to run successfuly prior to calling predict() ")
if not isinstance(X[0], list):
X=X.tolist()
if self.task=="regression" or self.n_classes<=2:
preds=[0.0 for k in range (len(X))]
for a in range (len(X)):
for jj in range (len(self.weights)):
preds[a]+=X[a][jj]*self.weights[jj]
if self.task=="classificaion":
if preds[a]>=0.5:
preds[a]=1.
else :
preds[a]=0.
else :
probs=[ [0.0 for ss in range(self.n_classes)] for k in range (len(X))]
preds=[0.0 for k in range (len(X))]
for a in range (len(X)):
for jj in range (len(self.weights)):
for jjj in range (self.n_classes):
probs[a][jjj]+=X[a][jj*self.n_classes+ jjj]*self.weights[jj]
maxes=probs[a][0]
bestf=0
for asd in range(1,self.n_classes):
if probs[a][asd]>maxes:
maxes=probs[a][asd]
bestf=asd
preds[a]= bestf
return np.array(preds)
"""
n_models :number of models to set linear weights
"""
def set_linear_blend(self,n_models):
self.weights=[1.0 for s in range (n_models)]
self.scale_weights(self.weights)
"""
n_classes : number of classess to set
"""
def set_n_classes(self,n_classes):
self.n_classes=n_classes
"""
X : 2-d numpy array
"""
def predict_proba(self, X):
if type(X) == type(None) or (not type(X) is np.ndarray and isinstance(X[0], list)==False):
raise Exception (" X needs to be a numpy array or a 2d list")
if len(self.weights)<1:
raise Exception (" fit method needs to run successfuly prior to calling predict() ")
if not isinstance(X[0], list):
X=X.tolist()
if self.task=="regression":
preds=[0.0 for k in range (len(X))]
for a in range (len(X)):
for jj in range (len(self.weights)):
preds[a]+=X[a][jj]*self.weights[jj]
elif self.n_classes<=2:
preds=[ [0.0 for k in range(2)] for k in range (len(X))]
for a in range (len(X)):
for jj in range (len(self.weights)):
preds[a][1]+=X[a][jj]*self.weights[jj]
preds[a][0]=1.-preds[a][1]
else :
preds=[ [0.0 for ss in range(self.n_classes)] for k in range (len(X))]
for a in range (len(X)):
for jj in range (len(self.weights)):
for jjj in range (self.n_classes):
preds[a][jjj]+=X[a][jj*self.n_classes+ jjj]*self.weights[jj]
bestf=0.0
for asd in range(self.n_classes):
bestf+=preds[a][asd]
for asd in range(self.n_classes):
preds[a][asd]/=bestf
return np.array(preds)