-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbx.py
500 lines (434 loc) · 16.6 KB
/
dbx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#!/usr/bin/env python
from math import exp, sqrt, log
import numpy
import pyEQ
class EnvelopeFollower(object):
'''Calculates the instantaneous power envelope of a waveform using classical
attack and release time parameters.'''
def __init__(self, rate, windowSec, attackSec, releaseSec):
'''Initializes and configures envelope detector.
See configure() for parameters.'''
self.configure(rate, windowSec, attackSec, releaseSec)
def configure(self, rate, windowSec, attackSec, releaseSec):
'''Configures detector for given parameters.
rate - Input sample rate, in hertz.
windowSec - The size of the evaluation window, in seconds.
attackSec - Attack rate, in seconds.
releaseSec - Release rate, in seconds.
Attack and release rates are the measured times it takes for the
difference between the follower's estimation of the input envelope and
the actual input envelope to reach within negative one neper (about -4.3
dB) of the input envelope.
The attack rate is used whenever the current estimation is below the
input and the release rate is used whenever the current estimation is
above the input.'''
# Compute the attack coefficient.
self._ga = exp(-1/(rate*attackSec))
# and the release coefficient.
self._gr = exp(-1/(rate*releaseSec))
self._windowSz = windowSec * rate
self.reset()
def reset(self):
self._hist = numpy.zeros(self._windowSz, dtype='float')
self._hist_i = 0
self._envelope = 0.0
def process(self, data):
'''Calculate the instantaneous power envelope for the given array of
input data, returning an output array of envelope values the same size.
The values returned are power-scaled, not voltage scaled. Thus, if the
input waveform has an RMS power of -10 dBfs, returns 0.01 and not
0.0316. 0.316 would be the equivalent RMS voltage for the same signal.
'''
# Square each input sample and then rescale for the evaluation
# window size.
data = data * data
data = data / self._windowSz
# Allocate the output array.
ret = numpy.empty(len(data), dtype='float')
# Cache some data that will be heavily used in the loop
ga = self._ga
gr = self._gr
j = self._hist_i
n = self._windowSz
hist = self._hist
sum = numpy.sum(self._hist)
env = self._envelope
for i, sample in enumerate(data):
sum += sample
sum -= hist[(j + i) % n]
hist[(j + i) % n] = sample
if env < sum:
env *= ga
env += (1 - ga) * sum
else:
env *= gr
env += (1 - gr) * sum
ret[i] = env
self._envelope = env
self._hist_i += len(data)
self._hist_i %= n
return ret
class Expander(object):
'''Audio expander, using RMS sense. Once instantiated, can be configured
for side-chain operation (signal A's amplitude is used to control signal B)
or for direct operation (signal A is both the control and the input).'''
def __init__(self, rate, window, attack, release, ratio, threshold, zero):
'''Instantiate an RMS-sensitive audio expander.
rate - Sample rate, in hertz.
window - RMS averaging window size, in seconds.
attack - Attack time, in seconds. (Neper scale).
release - Release time, in seconds. (Neper scale).
ratio - Expansion ratio, expressed as desired db(output level) /
db(input level).
threshold - Effect threshold, in dBfs (fs = "full scale", where full-scale
is assumed to be a sample value of 1.0
zero - Zero expansion point, in decibels. Input below this value will
be made quieter and input above this value will be louder.'''
self._detector = EnvelopeFollower(rate, window, attack, release)
self._threshold_nepers = (threshold / 10.0) * log(10)
#
# We will be using a scalar multiplication of the input signal when we
# apply the gain correction. To keep the expansion ratio as a power
# ratio and not a voltage ratio, we must multiply by the square root
# of the power gain required. This is easy to do in the logarithmic
# domain by reducing expansion ratio by one half.
#
self._ratio = (ratio - 1) / 2.0
self._zero_nepers = ((zero - threshold)/ 10.0) * log(10)
def process(self, data, control=None):
'''Expand a buffer of samples, possibly using a different buffer of
samples as the control (side-chain) channel.
data - A buffer of samples to process.
control - A buffer of samples to use as the side chain. If not
specified, the data samples themselves will be used.'''
if control is None:
control = data
envelope = self._detector.process(control)
nepers = numpy.log(envelope)
nepers -= self._threshold_nepers
nepers[numpy.where(nepers < 0.0)] = 0.0
nepers -= self._zero_nepers
nepers *= self._ratio
return data * numpy.exp(nepers)
class DBXDecoder(object):
'''A decoder for the DBX noise reduction algorithm.'''
Type_I = 1
Type_II = 2
def __init__(self, typ, rate, zero_point_dbfs, threshold_dbfs, exp_r,
neper_attack_time_s, neper_release_time_s):
'''Instantiate a decoder for a given DBX algorithm and sample rate.
typ - DBX algorithm/type, as an integer.
2 = DBX type II (the only supported type at the moment).
rate - Sampling rate, in hertz.
zero_point_dbfs - Expander zero point, in dbFS.
threshold_dbfs - Expander threshold, in dbFS.
exp_r - Expansion ratio
neper_attack_time_s - Attack time, in seconds, neper-basis.
neper_attack_time_s - Release time, in seconds, neper-basis.'''
if typ != self.Type_II:
raise Exception('Only type II supported at the moment.')
self._expander = Expander(
rate, # sample rate
0.001, # RMS window time (seconds)
neper_attack_time_s, # Attack time (neper basis)
neper_release_time_s, # Release time (neper basis)
exp_r, # Expansion ratio (out_dBfs/in_dBfs)
threshold_dbfs, # Expansion threshold (dBfs)
zero_point_dbfs # Expansion zero point (dBfs)
)
#
# DBX's expansion is controlled by a filtered version of the
# input signal. The filter is a specific equalizer and is known
# as the "control EQ".
#
# The type I control EQ has three bands:
# According to Bob Weitz:
# 1. A parametric cut filter with:
# * A 20 Hz center frequency
# * A Q value of .71
# * A gain of -8 dB
# 2. A parametric boost filter with:
# * A center frequency of 20 kHz
# * A Q value of .78
# * A gain of 16 dB
# 3. A low pass shelf filter with:
# * A cutoff frequency of 20 kHz
# * A cutoff rate of 12 dB/octave
# According to my reverse engineering of the MT100II deck:
# The DBX-II control curve:
# 1. A parametric cut filter with:
# * A 20 Hz center frequency
# * A Q value of 2.25
# * A gain of -14.6 dB
# 2. A parametric boost filter with:
# * A 7.8 kHz center frequency
# * A Q value of .58
# * A gain of 18 dB
# 3. A low pass shelf filter with:
# * A 11.5 kHz cutoff frequency
# * A cutoff rate of 12 dB/octave
#
# In addition, the output of the control EQ chain is then reduced by
# 3 dB. We will make this reduction happen in the process() method.
#
controlEQ = pyEQ.FilterChain()
controlEQ._filters.append(
pyEQ.Filter(
pyEQ.FilterType.Peak, # type
20.0 / rate * 2, # frequency (ratio against sample rate)
-14.6, # gain (decibels)
2.25, # q
)
)
controlEQ._filters.append(
pyEQ.Filter(
pyEQ.FilterType.Peak, # type
7800.0 / rate * 2, # frequency (ratio against sample rate)
18.0, # gain (decibels)
.58, # q
)
)
controlEQ._filters.append(
pyEQ.Filter(
pyEQ.FilterType.LPButter, # type
11500.0 / rate * 2, # frequency (ratio against sample rate)
0.0, # gain (decibels)
1., # (2^x * 6) db/ octave (if x=1 then db=12)
)
)
self._controlEQ = controlEQ
self._controlEQGain = 10 ** (-3/20.0)
#
# After expansion, the signal is treated with a post-emphasis filter.
#
# The post-emphasis filter has two bands:
# 1. A parametric boost filter with:
# * A center frequency of 80 hertz
# * A Q value of .22
# * A gain value of 12 dB
#
postEQ = pyEQ.FilterChain()
postEQ._filters.append(
pyEQ.Filter(
pyEQ.FilterType.Peak, # type
80.0 / rate * 2, # frequency (ratio against sample rate)
12.0, # gain (decibels)
.22 # q
)
)
self._postEQ = postEQ
def process(self, data):
'''Decode the given data, returning the decoded data.'''
control = self._controlEQ.filter(data)
control *= self._controlEQGain
expanded = self._expander.process(data, control)
return self._postEQ.filter(expanded)
def main(args):
import getopt
import wave
class WaveSource(object):
def __init__(self, path):
self._w = wave.open(path, 'r')
self._rate = self._w.getframerate()
self._channels = self._w.getnchannels()
self._depth = self._w.getsampwidth()
def rate(self):
return self._rate
def channels(self):
return self._channels
def depth(self):
return self._depth
def read(self, frame_count):
'''Read next available samples from file.
Returned data will be a numpy float multi-dimensional array.
The first dimension of the array is the channel number. The second
dimension is the sample number in the stream.
All sample data is normalized to a dBfs value of 1.0, regardless of
the input sample size.
May return less frames than requested. If no input is available, returns
None.'''
data = self._w.readframes(frame_count)
if data == '':
return None
channels = self._channels
depth = self._depth
frame_count = len(data) / channels / depth
if depth == 1:
samples = numpy.fromstring(data, dtype=numpy.int8)
samples = samples.reshape((channels, frame_count), order='F')
samples = samples / float(0x80)
elif depth == 2:
samples = numpy.fromstring(data, dtype=numpy.uint8)
samples = samples.astype(numpy.int16)
samples = (samples[1::2] << 8) + \
(samples[0::2] )
samples = samples.reshape((channels, frame_count), order='F')
samples = samples / float(0x8000)
else:
assert(depth == 3)
samples = numpy.fromstring(data, dtype=numpy.uint8)
samples = samples.astype(numpy.int32)
samples = (samples[2::3] << 24) + \
(samples[1::3] << 16) + \
(samples[0::3] << 8)
samples = samples.reshape((channels, frame_count), order='F')
samples = samples / float(0x80000000)
return samples
class WaveSink(object):
def __init__(self, path, rate, channels, depth):
'''Opens a WAVe file for writing.
path - Pathname of file to write.
rate - Sample rate, in hertz.
channels - Number of channels.
depth - Number of bytes per sample (1 = 8-bit, 2 = 16-bit, 3 = 24-bit )'''
self._channels = channels
self._depth = depth
self._w = wave.open(path, 'w')
self._w.setnchannels(channels)
self._w.setframerate(rate)
self._w.setsampwidth(depth)
def write(self, frames):
'''Writes samples to file.
frames - An array of arrays containing sample data in float format.
The outer array must contain one entry per channel. The inner
array contains the sample data for that channel. Values
will be interpreted as 1.0 being 0 dBfs.'''
framecount = len(frames[0])
data = frames.reshape(self._channels*framecount, order='F')
if self._depth == 1:
data = (data * 0x80).clip(-0x80, 0x7f).astype(numpy.int8)
data = ''.join([chr(x) for x in data])
elif self._depth == 2:
data = (data * 0x8000).clip(-0x8000, 0x7fff).astype(numpy.int16)
out = numpy.empty(2*framecount*self._channels, dtype=numpy.uint8)
out[1::2] = (data >> 8) & 0xff
out[0::2] = (data ) & 0xff
data = ''.join([chr(x) for x in out])
else:
assert(self._depth == 3)
data = (data * 0x800000).clip(-0x800000, 0x7fffff).astype(numpy.int32)
out = numpy.empty(3*framecount*self._channels, dtype=numpy.uint8)
out[2::3] = (data >> 16) & 0xff
out[1::3] = (data >> 8) & 0xff
out[0::3] = (data ) & 0xff
data = ''.join([chr(x) for x in out])
self._w.writeframes(data)
def close(self):
self._w.close()
def usage(prog):
print >>sys.stderr, 'usage:', prog, '[-y <dbx-type>] [-z <zero-point>] ' \
'[-R <ratio> [-a <attack>] [-r <release>] ' \
'[-t <threshold>]] <in-wav> <out-wav>'
print >>sys.stderr, 'Process an audio file with DBX noise reduction.'
print >>sys.stderr, ' -y <dbx-type>'
print >>sys.stderr, ' Use the specified DBX decoding type. Valid types '
print >>sys.stderr, ' are:'
print >>sys.stderr, ' 2 - DBX Type II (default)'
print >>sys.stderr, ' -z <zero-point>'
print >>sys.stderr, ' Set the expander\'s zero point level to <zero-point>'
print >>sys.stderr, ' decibels, full-scale (dbFS). The default is -15.'
print >>sys.stderr, ' -R <ratio>'
print >>sys.stderr, ' The expansion ratio to use. (default = 2.0)'
print >>sys.stderr, ' -a <attack_s>'
print >>sys.stderr, ' -r <release_s>'
print >>sys.stderr, ' -t <threshold_dbFS>'
sys.exit(1)
def error(msg, code):
print >>sys.stderr, msg
sys.exit(code)
def fatal(msg):
raise Exception(msg)
prog = args[0]
typ = DBXDecoder.Type_II
#
# According to Bob Weitz, DBX uses:
# - An expansion attack time of 16.5 ms (unknown log basis)
# - An expansion release time of 76 ms. (unknown log basis)
# - An expansion ratio of 2:1.
# - An expansion zero point of -15dB below tape saturation point
# We will assume that the input has been amplified such that the
# tape saturation point occurs at 0 dBfs.
#
# Over time I have changed these values by conducting my own tests of
# each parameter on my own DBX unit and by establishing a definite basis
# for the attack and release times in nepers. I now use these values:
#
exp_ratio = 2.05
neper_attack_time = 0.049
neper_release_time = 0.033
zero_point_dbfs = -15
threshold_dbfs = -61.0
(opts, args) = getopt.getopt(args[1:], 'a:y:z:r:R:t:')
for opt, val in opts:
if opt == '-y':
try:
typ = int(val)
except ValueError:
error('Invalid DBX type', 1)
elif opt == '-z':
try:
zero_point_dbfs = float(val)
except ValueError:
error('Invalid zero point', 1)
elif opt == '-R':
try:
exp_ratio = float(val)
except ValueError:
error('Invalid expansion ratio', 1)
elif opt == '-a':
try:
neper_attack_time = float(val)
except ValueError:
error('Invalid attack time', 1)
elif opt == '-r':
try:
neper_release_time = float(val)
except ValueError:
error('Invalid release time', 1)
elif opt == '-t':
try:
threshold_dbfs = float(val)
except ValueError:
error('Invalid threshold', 1)
else:
fatal('Oops. Unhandled option.')
if typ != DBXDecoder.Type_II:
error('Only DBX type II is supported at the moment.', 1)
if len(args) < 2:
usage(prog)
in_file, out_file = args[0], args[1]
try:
src = WaveSource(in_file)
except:
error('Can\'t open input file', 2)
rate = src.rate()
channels = src.channels()
try:
dst = WaveSink(out_file, rate, channels, src.depth())
except:
error('Can\'t open output file', 3)
block_size = 2048
out = numpy.empty((channels, block_size))
processors = [
DBXDecoder(
typ,
rate,
zero_point_dbfs,
threshold_dbfs,
exp_ratio,
neper_attack_time,
neper_release_time,
) for x in range(channels)
]
while True:
frames = src.read(block_size)
if frames is None:
break
if len(frames[0]) < block_size:
out.resize((channels, len(frames[0])))
for channel, samples in enumerate(frames):
out[channel] = processors[channel].process(samples)
dst.write(out)
if __name__ == '__main__':
import sys
main(sys.argv)