-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxlnet.py
24 lines (19 loc) · 916 Bytes
/
xlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from transformers import Trainer, default_data_collator, AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, pipeline
from datasets import load_dataset, load_metric
import torch
import numpy as np
from tqdm.auto import tqdm
import collections
class XLNET():
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("./test-squad-trained_xlnet")
self.model = AutoModelForQuestionAnswering.from_pretrained("./test-squad-trained_xlnet")
def predict(self, question: str, context: str):
"""
Returns a dictionary containing score, start index , end index and answer
"""
predictor = pipeline('question-answering', model=self.model, tokenizer=self.tokenizer)
return predictor({'question': question, 'context': context})
if __name__ == '__main__':
testmodel = XLNET()
print(testmodel.predict("who am I?", "My name is Roman"))