-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·220 lines (180 loc) · 6.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch, pathlib
import sys, os.path; end_locals, start_locals = lambda: sys.path.pop(0), (
lambda x: x() or x)(lambda: sys.path.insert(0, os.path.dirname(__file__)))
from audio import *
from transcribe import Transcriber
from interface import *
from utils import Batcher
end_locals()
async def test_range(x, y):
for i in range(x):
yield np.arange(1000 * i, 1000 * i + y)
def test_resample(x, y, z):
res = []
async def inner():
async for i in Batcher(test_range(x, y), z, exact=True):
res.append(i)
asyncio.run(inner())
return res
# if __name__ == "__main__":
# print(test_resample(6, 7, 3))
class LenTest(AudioFile):
def __init__(self, **kw):
super().__init__(**kw)
self.total = 0
def write(self, data):
super().write(data)
self.total += self.q.get_nowait().size
async def test(self):
await self.read()
print(self.total)
def __call__(self):
asyncio.run(self.test())
class Test(AudioFileStitch):
def __init__(self, **kw):
# global plt
# import matplotlib.pyplot as plt
super().__init__(**kw)
def padding(self, content_frames):
return N_FRAMES - content_frames
async def test(self):
out = await self.full()
# plt.imshow(out)
# plt.show()
def __call__(self):
asyncio.run(self.test())
class MockTokenizer:
def __init__(self, language, **kw):
self.language, self._kw = language, kw
for k, v in kw.items():
setattr(self, k, v)
def encode(self, prompt):
return [self.language, self, prompt]
class OnDemand:
def __init__(self, seq=(), relative=True):
self.seq, self.relative = seq, relative
self.prev, self.given = 0, 0
def __getitem__(self, key):
_key = self.given if self.relative else key
self.prev = self.seq[_key] if _key < len(self.seq) else int(
input(f"lang @ {_key}: ") or self.prev)
self.given += 1
return self.prev
def __len__(self):
return CHUNK_LENGTH + 1 if self.relative else len(self.seq)
class TranscriberTest(Transcriber):
sample = object()
dtype = torch.float32
model = type("MockModel", (), {
"is_multilingual": True,
"num_languages": None,
"device": torch.device("cpu")
})()
_seek = 0
def __init__(self, seq=None):
super().__init__(self.model, initial_prompt="")
self.seq = OnDemand(seq or ())
self.result = []
self.latest = np.empty((0,))
for i in range(len(self.seq)):
self._seek = i
self.frame_offset = max(0, i + 1 - CHUNK_LENGTH)
res = self.initial_prompt_tokens
assert res[0] == self.seq.prev
self.result.append(res[1:])
if seq is None:
print(res)
def detect_language(self, mel=None):
self.result.append([self.sample, mel])
return self.seq[self._seek]
def get_tokenizer(self, multilingual, language, **kw):
return MockTokenizer(language, **{"multilingual": multilingual, **kw})
@property
def rle(self):
res = []
for i, *j in self.result:
if i is self.sample:
res.append(0)
else:
res[-1] += 1
return res
if __name__ == "__main__":
print(TranscriberTest([0, 0, 1, 0, 0, 0, 0, 0, 0]).rle)
class ReadableMinimal(MinimalTranscriber, AudioTranscriber):
def gutter(self, segment):
return hms(segment["start"]) + " - " + hms(segment["end"])
def __repr__(self):
return "\n".join(map(self.repr, self.all_segments))
def match2d(a, b, eps=1e-6):
assert b.shape[-1] < a.shape[-1]
c = np.concatenate((a, np.zeros(a.shape[:-1] + (b.shape[-1],))), -1)
d = b.numpy()
res = np.where(
np.vectorize(lambda i: np.all(np.isclose(
d, c[:, i : b.shape[-1] + i], 0, eps)))(np.arange(a.shape[-1])))
if res[0].shape:
return res
err = np.min(np.vectorize(
lambda i: np.max(np.abs(a[:, i : b.shape[-1] + i] - b)))(
np.arange(a.shape[-1] - b.shape[-1])))
breakpoint()
class ModelContainer:
def __init__(self, model, idx=None, ref=0.):
self._model, self._idx, self._ref = model, idx, ref
self._decoded, self._options, self._results = [], [], []
def decode(self, segment, options):
self._options.append(options)
if self._ref is None or options.temperature == self._ref:
if isinstance(self._idx, Transcriber):
self._decoded.append(self._idx.seek)
elif self._idx is not None:
self._decoded.append(match2d(self._idx, segment))
else:
self._decoded.append(segment)
res = self._model.decode(segment, options)
self._results.append(res)
return res
def __getattr__(self, key):
return getattr(self._model, key)
test_dir = pathlib.Path(__file__).parents[0] / "tests"
test_files = str(test_dir / "*.wav")
test_file = str(test_dir / "List01Sentence01.wav")
def minimal_test(seq=test_files):
from whisper import load_model, transcribe
model = load_model("base.en")
stream = lambda: AudioFileStitch(seq=seq)
mel = stream().sequential()
def transcriber(idx=...):
container = ModelContainer(
model, *(() if idx in (None, ...) else (idx,)), ref=None)
res = ReadableMinimal(container)
if idx is ...:
container._idx = res
return res
minimal = transcriber()
asyncio.run(minimal.process(stream()))
polyfill = transcriber()
polyfill(mel)
from whisper.audio import log_mel_spectrogram
amps = stream().all_amplitudes()
mel_original = log_mel_spectrogram(amps)
# original = transcriber(mel_original)
original = transcriber()
original.all_segments = transcribe(original.model, amps)['segments']
return minimal, polyfill, original
def mel_test(seq=test_files, check_amp=False):
from whisper.audio import log_mel_spectrogram
stream = lambda: AudioFileStitch(seq=seq)
original = log_mel_spectrogram(stream().all_amplitudes())
polyfill = stream().sequential()[:, :-N_FRAMES]
if isinstance(seq, str) and "*" not in seq and check_amp:
assert torch.all(original == log_mel_spectrogram(seq))
return polyfill, original
class ReadableProgress(ProgressTranscriber, ReadableMinimal):
pass
# if __name__ == "__main__":
# from whisper import load_model
# import sys
# transcriber = ReadableProgress(load_model("base.en"), verbose=False)
# asyncio.run(transcriber.progressive(AudioFile(fname=sys.argv[1])))
# print(transcriber)