-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
142 lines (118 loc) · 5.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Supervised Community Detection with Hierarchical Graph Neural Networks
https://arxiv.org/abs/1705.08415
Author's implementation: https://github.com/joanbruna/GNN_community
"""
from __future__ import division
import time
import argparse
from itertools import permutations
import numpy as np
import torch as th
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from dgl.data import SBMMixtureDataset
import gnn
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, help='Batch size', default=1)
parser.add_argument('--gpu', type=int, help='GPU index', default=-1)
parser.add_argument('--lr', type=float, help='Learning rate', default=0.001)
parser.add_argument('--n-communities', type=int, help='Number of communities', default=2)
parser.add_argument('--n-epochs', type=int, help='Number of epochs', default=100)
parser.add_argument('--n-features', type=int, help='Number of features', default=16)
parser.add_argument('--n-graphs', type=int, help='Number of graphs', default=10)
parser.add_argument('--n-layers', type=int, help='Number of layers', default=30)
parser.add_argument('--n-nodes', type=int, help='Number of nodes', default=10000)
parser.add_argument('--optim', type=str, help='Optimizer', default='Adam')
parser.add_argument('--radius', type=int, help='Radius', default=3)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
dev = th.device('cpu') if args.gpu < 0 else th.device('cuda:%d' % args.gpu)
K = args.n_communities
training_dataset = SBMMixtureDataset(args.n_graphs, args.n_nodes, K)
training_loader = DataLoader(training_dataset, args.batch_size,
collate_fn=training_dataset.collate_fn, drop_last=True)
ones = th.ones(args.n_nodes // K)
y_list = [th.cat([x * ones for x in p]).long().to(dev) for p in permutations(range(K))]
feats = [1] + [args.n_features] * args.n_layers + [K]
model = gnn.GNN(feats, args.radius, K).to(dev)
optimizer = getattr(optim, args.optim)(model.parameters(), lr=args.lr)
def compute_overlap(z_list):
ybar_list = [th.max(z, 1)[1] for z in z_list]
overlap_list = []
for y_bar in ybar_list:
accuracy = max(th.sum(y_bar == y).item() for y in y_list) / args.n_nodes
overlap = (accuracy - 1 / K) / (1 - 1 / K)
overlap_list.append(overlap)
return sum(overlap_list) / len(overlap_list)
def from_np(f, *args):
def wrap(*args):
new = [th.from_numpy(x) if isinstance(x, np.ndarray) else x for x in args]
return f(*new)
return wrap
@from_np
def step(i, j, g, lg, deg_g, deg_lg, pm_pd):
""" One step of training. """
g = g.to(dev)
lg = lg.to(dev)
deg_g = deg_g.to(dev).unsqueeze(1)
deg_lg = deg_lg.to(dev).unsqueeze(1)
pm_pd = pm_pd.to(dev)
t0 = time.time()
z = model(g, lg, deg_g, deg_lg, pm_pd)
t_forward = time.time() - t0
z_list = th.chunk(z, args.batch_size, 0)
loss = sum(min(F.cross_entropy(z, y) for y in y_list) for z in z_list) / args.batch_size
overlap = compute_overlap(z_list)
optimizer.zero_grad()
t0 = time.time()
loss.backward()
t_backward = time.time() - t0
optimizer.step()
return loss, overlap, t_forward, t_backward
@from_np
def inference(g, lg, deg_g, deg_lg, pm_pd):
g = g.to(dev)
lg = lg.to(dev)
deg_g = deg_g.to(dev).unsqueeze(1)
deg_lg = deg_lg.to(dev).unsqueeze(1)
pm_pd = pm_pd.to(dev)
z = model(g, lg, deg_g, deg_lg, pm_pd)
return z
def test():
p_list =[6, 5.5, 5, 4.5, 1.5, 1, 0.5, 0]
q_list =[0, 0.5, 1, 1.5, 4.5, 5, 5.5, 6]
N = 1
overlap_list = []
for p, q in zip(p_list, q_list):
dataset = SBMMixtureDataset(N, args.n_nodes, K, pq=[[p, q]] * N)
loader = DataLoader(dataset, N, collate_fn=dataset.collate_fn)
g, lg, deg_g, deg_lg, pm_pd = next(iter(loader))
z = inference(g, lg, deg_g, deg_lg, pm_pd)
overlap_list.append(compute_overlap(th.chunk(z, N, 0)))
return overlap_list
n_iterations = args.n_graphs // args.batch_size
for i in range(args.n_epochs):
total_loss, total_overlap, s_forward, s_backward = 0, 0, 0, 0
for j, [g, lg, deg_g, deg_lg, pm_pd] in enumerate(training_loader):
loss, overlap, t_forward, t_backward = step(i, j, g, lg, deg_g, deg_lg, pm_pd)
total_loss += loss
total_overlap += overlap
s_forward += t_forward
s_backward += t_backward
epoch = '0' * (len(str(args.n_epochs)) - len(str(i)))
iteration = '0' * (len(str(n_iterations)) - len(str(j)))
if args.verbose:
print('[epoch %s%d iteration %s%d]loss %.3f | overlap %.3f'
% (epoch, i, iteration, j, loss, overlap))
epoch = '0' * (len(str(args.n_epochs)) - len(str(i)))
loss = total_loss / (j + 1)
overlap = total_overlap / (j + 1)
t_forward = s_forward / (j + 1)
t_backward = s_backward / (j + 1)
print('[epoch %s%d]loss %.3f | overlap %.3f | forward time %.3fs | backward time %.3fs'
% (epoch, i, loss, overlap, t_forward, t_backward))
overlap_list = test()
overlap_str = ' - '.join(['%.3f' % overlap for overlap in overlap_list])
print('[epoch %s%d]overlap: %s' % (epoch, i, overlap_str))