forked from haamoon/mmtm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_mmtm_ntu.py
261 lines (210 loc) · 10.6 KB
/
main_mmtm_ntu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Copyright (c) 2020 Amirreza Shaban
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
@author: amirreza
"""
import sys
# Make sure MFAS is in the path
sys.path.append('mfas')
import models.central.ntu as central
from main_found_ntu import get_dataloaders
import torch
import argparse
import os
import copy
import mmtm
from tqdm import tqdm
#%% Parse inputs
def parse_args():
parser = argparse.ArgumentParser(description='Modality optimization.')
parser.add_argument('--checkpointdir', type=str, help='output base dir', default='checkpoints')
parser.add_argument('--datadir', type=str, help='data directory', default='dataset')
parser.add_argument('--ske_cp', type=str, help='Skeleton net checkpoint (assuming is contained in checkpointdir)', default='skeleton_32frames_85.24.checkpoint')
parser.add_argument('--rgb_cp', type=str, help='RGB net checkpoint (assuming is contained in checkpointdir)', default='rgb_8frames_83.91.checkpoint')
parser.add_argument('--test_cp', type=str, help='Full net checkpoint (assuming is contained in checkpointdir)', default='')
parser.add_argument('--num_outputs', type=int, help='output dimension', default=60)
parser.add_argument('--batchsize', type=int, help='batch size', default=20)
parser.add_argument('--epochs', type=int, help='training epochs', default=70)
parser.add_argument('--use_dataparallel', help='Use several GPUs', action='store_true', dest='use_dataparallel', default=False)
parser.add_argument('--j', dest='num_workers', type=int, help='Dataloader CPUS', default=16)
parser.add_argument('--modality', type=str, help='', default='both')
parser.add_argument('--no-verbose', help='verbose', action='store_false', dest='verbose', default=True)
parser.add_argument('--no-multitask', dest='multitask', help='Multitask loss', action='store_false', default=True)
parser.add_argument("--vid_len", action="store", default=(8,32), dest="vid_len", type=int, nargs='+', help="length of video, as a tuple of two lengths, (rgb len, skel len)")
parser.add_argument("--drpt", action="store", default=0.4, dest="drpt", type=float, help="dropout")
parser.add_argument('--no_bad_skel', action="store_true", help='Remove the 300 bad samples, espec. useful to evaluate', default=False)
parser.add_argument("--no_norm", action="store_true", default=False, dest="no_norm", help="Not normalizing the skeleton")
parser.add_argument('--train', action='store_true', default=False, help='training')
return parser.parse_args()
def update_lr(optimizer, multiplier = .1):
state_dict = optimizer.state_dict()
for param_group in state_dict['param_groups']:
param_group['lr'] = param_group['lr'] * multiplier
optimizer.load_state_dict(state_dict)
def step(branch, input_data, optimizers, criteria, is_training):
rgb, ske, label = input_data
optimizer = optimizers[branch]
# Track history only in training
with torch.set_grad_enabled(is_training):
output = model((rgb, ske))
# Predict
_, preds1 = torch.max(output[0], 1)
_, preds2 = torch.max(output[1], 1)
_, preds = torch.max(output[0] + output[1], 1)
# Backward
optimizer.zero_grad()
loss = criteria(output[branch], label)
# Backward into the branch
if is_training:
loss.backward()
optimizer.step()
return loss, preds1, preds2, preds
def train_mmtm_track_acc(model, criteria, optimizers,
dataloaders, dataset_sizes,
device=None, num_epochs=200,
verbose=False, multitask=False):
torch.autograd.set_detect_anomaly(True)
best_model_sd = copy.deepcopy(model.state_dict())
best_loss = float('inf')
for epoch in range(num_epochs):
# Each epoch has a training and validation phase
for phase in ['train', 'dev']:
print('Epoch {}, Phase {}'.format(epoch + 1, phase))
is_training = (phase == 'train')
model.train(is_training)
# Learning rate schedule
if is_training and (epoch == 5 or epoch == 20):
update_lr(optimizers[0], multiplier = .1)
update_lr(optimizers[1], multiplier = .1)
running_loss1, running_loss2 = 0.0, 0.0
running_corrects, running_corrects1, running_corrects2 = 0, 0, 0
ndata = 0
# Iterate over data
for data in tqdm(dataloaders[phase]):
input_data = [data[n].to(device) for n in ['rgb', 'ske', 'label']]
if input_data[0].shape[2] == 0:
continue
# Update Visual Branch
loss1, preds1, _, preds = step(0, input_data, optimizers, criteria, is_training)
# Update Skeleton Branch
loss2, _, preds2, _ = step(1, input_data, optimizers, criteria, is_training)
# Update statistics
batch_size = input_data[0].size(0)
running_loss1 += loss1.item() * batch_size
running_corrects1 += torch.sum(preds1 == input_data[2].data)
running_loss2 += loss2.item() * batch_size
running_corrects2 += torch.sum(preds2 == input_data[2].data)
running_corrects += torch.sum(preds == input_data[2].data)
ndata = ndata + batch_size
avg_loss = (running_loss1 + running_loss2) / ndata / 2
epoch_loss = [avg_loss,
running_loss1 / ndata,
running_loss2 / ndata]
epoch_acc = [running_corrects.double() / ndata,
running_corrects1.double() / ndata,
running_corrects2.double() / ndata]
print('Acc Multimodal: {:.4f}, Acc Visual: {:.4f}, Acc Skeleton: {:.4f}'.format(*epoch_acc))
print('Loss Avg: {:.6f}, Loss Visual: {:.6f}, Loss Skeleton: {:.6f}'.format(*epoch_loss))
# Keep the best model
if not is_training and (avg_loss < best_loss or epoch % 5 == 0):
if avg_loss < best_loss:
best_loss = avg_loss
best_model_sd = copy.deepcopy(model.state_dict())
filename = (args.checkpointdir +
'/fusion_mmtm_epoch_{}_val_loss_{:.4f}.checkpoint'.format(
epoch, avg_loss))
torch.save(model.state_dict(), filename)
print('Saving ' + filename)
model.load_state_dict(best_model_sd)
model.train(False)
return best_loss
def test_mmtm_track_acc(model, dataloaders, dataset_sizes,
device=None, multitask=False):
model.train(False)
phase = 'test'
running_corrects, running_corrects1, running_corrects2 = 0, 0, 0
# Iterate over data
ndata = 0
for data in tqdm(dataloaders[phase]):
# Get the inputs
rgb, ske, label = [data[n].to(device) for n in ['rgb', 'ske', 'label']]
# Forward
output = model((rgb, ske))
# Predict
preds1 = torch.argmax(output[0], dim = -1)
preds2 = torch.argmax(output[1], dim = -1)
preds = torch.argmax(output[0] + output[1], dim = -1)
# Update statistics
running_corrects += torch.sum(preds == label.data)
running_corrects1 += torch.sum(preds1 == label.data)
running_corrects2 += torch.sum(preds2 == label.data)
ndata += rgb.size(0)
acc = running_corrects.double() / ndata
acc_vis = running_corrects1.double() / ndata
acc_ske = running_corrects2.double() / ndata
return acc, acc_vis, acc_ske
def test_model(model, dataloaders, args, device):
dataset_sizes = {x: len(dataloaders[x].dataset) for x in ['train', 'test', 'dev']}
filename = os.path.join(args.checkpointdir, args.test_cp)
model.load_state_dict(torch.load(filename))
print('Loading ' + filename)
# hardware tuning
if torch.cuda.device_count() > 1 and args.use_dataparallel:
model = torch.nn.DataParallel(model)
model.to(device)
test_model_acc = test_mmtm_track_acc(model, dataloaders, dataset_sizes,
device=device, multitask=args.multitask)
return test_model_acc
def train_model(model, dataloaders, args, device):
dataset_sizes = {x: len(dataloaders[x].dataset) for x in ['train', 'test', 'dev']}
criteria = torch.nn.CrossEntropyLoss()
# loading pretrained weights
skemodel_filename = os.path.join(args.checkpointdir, args.ske_cp)
rgbmodel_filename = os.path.join(args.checkpointdir, args.rgb_cp)
model.skeleton.load_state_dict(torch.load(skemodel_filename))
model.visual.load_state_dict(torch.load(rgbmodel_filename))
# optimizers
optimizers = [torch.optim.Adam(model.get_visual_params(), lr=.0001, weight_decay=1e-4),
torch.optim.Adam(model.get_skeleton_params(), lr=.0001, weight_decay=1e-4)]
# hardware tuning
if torch.cuda.device_count() > 1 and args.use_dataparallel:
model = torch.nn.DataParallel(model)
model.to(device)
val_model_acc = train_mmtm_track_acc(model, criteria, optimizers, dataloaders,
dataset_sizes, device=device,
num_epochs=args.epochs, verbose=args.verbose,
multitask=args.multitask)
return val_model_acc
if __name__ == "__main__":
print("Training MMTM network")
args = parse_args()
print("The configuration of this run is:")
use_gpu = torch.cuda.is_available()
device = torch.device("cuda:0" if use_gpu else "cpu")
dataloaders = get_dataloaders(args)
model = mmtm.MMTNet(args)
model.set_return_both(True)
visual = central.Visual(args)
skeleton = central.Skeleton(args)
model.set_visual_skeleton_nets(visual, skeleton)
if args.train:
train_model(model, dataloaders, args, device)
else:
test_acc = test_model(model, dataloaders, args, device)
print('Acc Multimodal: {:.4f}, Acc Visual: {:.4f}, Acc Skeleton: {:.4f}'.format(*test_acc))