-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAnalyseReactionsPosts.m
195 lines (174 loc) · 4.59 KB
/
AnalyseReactionsPosts.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import java.util.*;
% then use following commands to deal with stack
A = Stack();
A.push(1); % inserts 1 on top of stack A
%A.pop(); %
A.get(0);
B = Stack();
B.push(A);
[status,result] = dos('node test_getTable.js Analyse_posts_groupe Post');
X = str2num(result);
close all;
figure;
plot3(X(1:end,1),X(1:end,2),X(1:end,3),'*');
xlabel('Likes');
ylabel('Comments');
zlabel('Shares');
n = size(X,1);
m = size(X,2);
%Trier
[Y, indices] = sort(X,'descend');
pre_rangs = zeros(n,1);
for j=1:n
for i=1:m
[ligne,col] = find(indices(1:end,i) == j);
pre_rangs(j,1) = pre_rangs(j,1) + ligne;
end
end
pre_rangs = pre_rangs/m;
[~, rangs] = sort(pre_rangs,'ascend');
%% ACP Algoritm
X_moyen = ones(n,1)*(ones(1,n)*X/n);
% Centrage de la matrice Reactions :
X_centre = X - X_moyen;
% Calcul de la matrice de covariance :
Sigma = transpose(X_centre)*X_centre/n;
[V,D] =eig(Sigma);
[lambda, ind] = sort(diag(D),'descend');
W = V(:, ind);
C = X*W(1);
distances = zeros(n,n);
for i= 1:n
for j=1:n
distances(i,j) = abs(C(i)-C(j));
end
end
moyenne = zeros(n*(n-1)/2,1);
for i= 1:n
for j=i+1:n
moyenne(j-i+n*(i-1)-(i-1)*i/2) = distances(i,j);
end
end
epsilon = mean(moyenne);
pre_segmentation = Stack();
liste = 1:n;
for i= 1:n
classe = Stack();
for j=i:n
if liste(j)~= 0
if distances(i,liste(j)) < epsilon
classe.push(liste(j));
liste(j) = 0;
end
end
end
if classe.size ~= 0
pre_segmentation.push(classe);
end
end
scores = Stack();
for i=0:pre_segmentation.size-1
classe = pre_segmentation.get(i);
moyennes = zeros (m,1);
for j=0:classe.size-1
for k=1:m
moyennes(k) = moyennes(k) + X(classe.get(j),k);
end
end
for k=1:m
moyennes(k) = moyennes(k) / classe.size;
end
moyenne = Stack();
for k=1:m
moyenne.push(moyennes(k));
end
scores.push(moyenne);
end
figure;
for i=0:pre_segmentation.size-1
longueur_segment = pre_segmentation.get(i).size;
segment = zeros(longueur_segment,1);
for j=0:longueur_segment-1
segment(j+1) = pre_segmentation.get(i).get(j);
end
plot3(X(segment,1),X(segment,2),X(segment,3),'*');
hold on;
end
xlabel('Likes');
ylabel('Comments');
zlabel('Shares');
%% K-means Algoritm
k = pre_segmentation.size;
epsilon_k_means = 10^(-4);
centres_gravites = zeros(k,3);
for i=0:k-1
centres_gravites(i+1,1:end) = X(pre_segmentation.get(i).get(0),1:end);
end
while(true)
segmentations = Stack();
segments = Stack();
for i=1:k
classe = Stack();
segment = Stack();
point = Stack();
for j=1:3
point.push(centres_gravites(i,j));
end
segment.push(point);
segments.push(segment);
segmentations.push(classe);
end
for i=1:n
distances = zeros(k,1);
for j=1:k
point = X(i,1:end);
centre = centres_gravites(j,1:end);
distances(j) = sqrt((point(1)-centre(1))^2+(point(2)-centre(2))^2+(point(3)-centre(3))^2);
end
[~,indice] = min(distances);
point = Stack();
for j=1:3
point.push(X(i,j));
end
segments.get(indice-1).push(point);
segmentations.get(indice-1).push(i);
end
moyennes = zeros(k,m);
for i=0:k-1
points = zeros(segments.get(i).size-1,3);
for j=1:segments.get(i).size-1
for l=1:3
points(j,l) = segments.get(i).get(j).get(l-1);
end
end
for j=1:segments.get(i).size-1
moyennes(i+1,1:end) = mean(points);
end
end
distances_entre_centres = zeros(k,1);
for i=1:k
centre_avant = centres_gravites(i,1:end);
centre_apres = moyennes(i,1:end);
distances_entre_centres(i) = sqrt((centre_avant(1)-centre_apres(1))^2+(centre_avant(2)-centre_apres(2))^2+(centre_avant(3)-centre_apres(3))^2);
end
if (mean(distances_entre_centres) < epsilon_k_means )
break;
else
centres_gravites(1:end,1:end) = moyennes(1:end,1:end);
end
end
figure;
for i=0:segments.size-1
longueur_segment = segments.get(i).size;
points = zeros(longueur_segment,3);
for j=0:longueur_segment-1
for l=1:3
points(j+1,l) = segments.get(i).get(j).get(l-1);
end
end
plot3(points(1:end,1),points(1:end,2),points(1:end,3));
hold on;
end
xlabel('Likes');
ylabel('Comments');
zlabel('Shares');