This repository has been archived by the owner on Jun 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
227 lines (198 loc) · 7.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import datetime as dt
import logging
import traceback
from typing import List
from job_notifications import create_notifications, timer
import pandas as pd
import requests
from sqlsorcery import MSSQL
import config
notifications = create_notifications("Kelvin", "mailgun", "app.log")
class Connector:
"""
Data connector for Extracting data, Transforming into dataframes,
?? and loads into db (or keep the load separate from this class since we have sql_sorcery?)
"""
def __init__(self):
self.sql = MSSQL()
self.url = "https://pulse.kelvin.education/api/v1/pulse_responses"
self.query_date = None
self.headers = {"Authorization": f"token {config.API_TOKEN}"}
def get_last_dw_update(self) -> str:
df = pd.read_sql_table("kelvin_pulse_responses", con=self.sql.engine, schema=self.sql.schema)
return df["responded_at"].max()
def get_responses(self) -> List[dict]:
""" Extract data to load into the dw """
page = 0
all_records = []
while True:
params = self.set_query_params(page)
r = requests.get(f"{self.url}", headers=self.headers, params=params).json()
logging.debug(f"Requesting data from {self.url} page {page}")
if r:
all_records.extend(r)
logging.debug(f"Extracted {len(r)} records from page {page}")
page += 1
if page % 50 == 0:
# Logging every 50 pages so we know the job isn't stalling
logging.info(f"Page {page} of {self.url}")
else:
logging.debug(f"No data from page {page}")
break
return all_records
def set_query_params(self, page: int) -> dict:
params = {}
params["page"] = page
if self.query_date is not None:
params["after"] = self.query_date
return params
@staticmethod
def normalize_json(records: List[dict]) -> pd.DataFrame:
"""
Takes in dataframe of all data to be processed, and list of record paths.
Loops over nested json and returns normalized data frame.
"""
df = pd.json_normalize(
records,
record_path=["responses", "choices"],
meta=[
"id",
"pulse_id",
"pulse_name",
"pulse_window_id",
"pulse_window_number",
"pulse_window_start_date",
"pulse_window_end_date",
"pulse_respondent_type",
"email",
"state_id",
"district_id",
"display_id",
"participant_id",
"responded_at",
"needs_assistance",
"needs_assistance_asked",
["responses", "question_id"],
["responses", "dimension_id"],
["responses", "skipped"],
["responses", "stem"],
["responses", "dimension"],
["responses", "is_favorable"],
["responses", "comment"],
["responses", "comment_share_name"],
],
errors="ignore",
sep="_",
)
""" Lint Columns (timestamp, sort order, data types) """
df["LastUpdated"] = dt.datetime.now()
col_order = [
"id",
"pulse_id",
"pulse_name",
"pulse_window_id",
"pulse_window_number",
"pulse_window_start_date",
"pulse_window_end_date",
"pulse_respondent_type",
"email",
"state_id",
"district_id",
"display_id",
"participant_id",
"responded_at",
"needs_assistance",
"needs_assistance_asked",
"responses_question_id",
"responses_dimension_id",
"responses_skipped",
"responses_stem",
"responses_dimension",
"responses_is_favorable",
"responses_comment",
"responses_comment_share_name",
"choice",
"sort_order",
"number",
]
df = df[col_order]
numerics = [
"pulse_id",
"pulse_window_id",
"pulse_window_number",
"state_id",
"display_id",
"responses_question_id",
]
for item in numerics:
df[item] = pd.to_numeric(df[item])
dates = ["pulse_window_start_date", "pulse_window_end_date"]
for item in dates:
df[item] = df[item].astype("datetime64[ns]")
return df
def load_into_dw(self, df: pd.DataFrame) -> None:
"""Writes the data into the related table"""
table_name = "kelvin_pulse_responses"
logging.info(f"{table_name}: inserting {len(df)} records into {table_name}.")
self.sql.insert_into(table_name, df, chunksize=10000, if_exists="replace")
def load_into_survey_model(self):
"""Take raw Kelvin data and parse it in to relational survey model dims and fact."""
# This list allows us to loop through the table names in a specific order,
# which is required due to dependencies
# - dimRespondent depends on SurveyKey
# - dimQuestion depends on dimSurvey and dimResponseItem
# - factResponse depends on dimRespondent and dimQuestion
table_names = [
"Survey_dimSurvey",
"Survey_dimRespondent",
"Survey_dimResponseItem",
"Survey_dimQuestion",
"Survey_factResponse",
]
for table_name in table_names:
df = self.sql.query_from_file(f"sql/{table_name}.sql")
if not df.empty:
self.sql.insert_into(table_name, df)
logging.info(f"Inserted {len(df)} records into {table_name}.")
else:
logging.info(f"No records to insert into {table_name}.")
def calculate_query_date(last_updated_timestamp: str) -> str:
"""
Moving query date up by a day to avoid duplicates. Since job typically runs on a Sunday,
it should have all of the responses from the last date.
"""
date_str = last_updated_timestamp.split(" ")[0]
year, month, day = date_str.split("-")
date_obj = dt.date(
year=int(year),
month=int(month),
day=int(day)
)
query_date = date_obj + dt.timedelta(days=1)
return query_date.strftime("%Y-%m-%d")
@timer("Kelvin")
def main():
config.set_logging()
connector = Connector()
if not config.ARGS.truncate_reload:
last_update_date = connector.get_last_dw_update()
query_date = calculate_query_date(last_update_date)
logging.info(f"Querying record since {query_date}")
connector.query_date = query_date
else:
logging.info("Full truncate reload of Kelvin data.")
logging.info("Getting responses from Kelvin")
all_records = connector.get_responses()
df_trans = connector.normalize_json(all_records)
logging.info("Loading data into kelvin_pulse_responses")
connector.load_into_dw(df_trans)
logging.info("Loading data into survey models")
connector.load_into_survey_model()
if __name__ == "__main__":
try:
main()
notifications.notify()
except Exception as e:
logging.exception(e)
error_message = traceback.format_exc()
notifications.notify(error_message=error_message)