forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVolumetricSoftMax.lua
47 lines (39 loc) · 1.47 KB
/
VolumetricSoftMax.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
local VolumetricSoftMax, parent = torch.class('cudnn.VolumetricSoftMax', 'nn.Module')
function VolumetricSoftMax:__init(fast)
parent.__init(self)
self.ssm = cudnn.SpatialSoftMax(fast)
end
local fold = function(input)
-- Fold time and height into one dimension
if input:dim() == 4 then
-- dthw -> d(t*h)w
input = input:view(input:size(1), input:size(2)*input:size(3),
input:size(4))
else
-- bdthw -> bd(t*h)w
input = input:view(input:size(1), input:size(2),
input:size(3)*input:size(4), input:size(5))
end
return input
end
function VolumetricSoftMax:updateOutput(input)
assert(input:dim() == 4 or input:dim() == 5,
'input should either be a 3d image or a minibatch of them')
local originalInputSize = input:size()
-- Apply SpatialSoftMax to folded input
self.ssm:updateOutput(fold(input))
self.output = self.ssm.output:view(originalInputSize)
return self.output
end
function VolumetricSoftMax:updateGradInput(input, gradOutput)
assert(input:dim() == 4 or input:dim() == 5,
'input should either be a 3d image or a minibatch of them')
local originalInputSize = input:size()
self.ssm:updateGradInput(fold(input), fold(gradOutput))
self.gradInput = self.ssm.gradInput:view(originalInputSize)
return self.gradInput
end
function VolumetricSoftMax:clearState()
self.ssm:clearState()
return parent.clearState(self)
end