-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_vec.py
43 lines (33 loc) · 1.32 KB
/
search_vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.nn.functional as F
import numpy as np
import random
def cal_distance(point,direct):
points = point.unsqueeze(0).repeat(10,1)
c = F.normalize(direct,dim=1,p=2)
norm = torch.div(torch.sum(torch.mul(points,direct),dim=1),torch.norm(direct,dim=1,p=2)).unsqueeze(1)
e = points-torch.mul(c,norm)
return torch.norm(e,dim=1,p=2)
def euclidean_dist(pointA, pointB):
total = (pointA - pointB)
return torch.norm(total,p=2)
def max_difference(vec,centers,label=None):
distances = cal_distance(vec,centers)
if label == None:
distances,_ = torch.sort(distances)
first_min = distances[0]
second_min = torch.mean(distances)
else:
first_min = distances[label]
second_min = torch.mean(distances)
return (second_min-first_min)/first_min
def forward(point,centers,label):
max_diff = max_difference(point,centers,label)
return max_diff
def search_vec(center,target_clean_vecs,unit):
center = torch.tensor(center)
target_clean_vecs = torch.tensor(target_clean_vecs)
max_length = torch.max(torch.norm(target_clean_vecs,dim=1,p=2))
target_vec = center * max_length/torch.norm(center,p=2)*0.85
target_vec = target_vec.detach().cpu().numpy()
return target_vec.reshape((64,int((int((int(32*unit)-2)/2+1)-2)/2+1),8))