-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridWorldGame.py
130 lines (113 loc) · 3.36 KB
/
gridWorldGame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Adapted from: https://github.com/lazyprogrammer/machine_learning_examples/tree/master/rl
import numpy as np
class Grid: # Environment
def __init__(self, width, height, start):
self.width = width
self.height = height
self.i = start[0]
self.j = start[1]
def set(self, rewards, actions):
# rewards should be a dict of: (i, j): r (row, col): reward
# actions should be a dict of: (i, j): A (row, col): list of possible actions
self.rewards = rewards
self.actions = actions
def set_state(self, s):
self.i = s[0]
self.j = s[1]
def current_state(self):
return (self.i, self.j)
def is_terminal(self, s):
return s not in self.actions
def move(self, action):
# check if legal move first
if action in self.actions[(self.i, self.j)]:
if action == 'U':
self.i -= 1
elif action == 'D':
self.i += 1
elif action == 'R':
self.j += 1
elif action == 'L':
self.j -= 1
# return a reward (if any)
return self.rewards.get((self.i, self.j), 0)
def undo_move(self, action):
# these are the opposite of what U/D/L/R should normally do
if action == 'U':
self.i += 1
elif action == 'D':
self.i -= 1
elif action == 'R':
self.j -= 1
elif action == 'L':
self.j += 1
# raise an exception if we arrive somewhere we shouldn't be
# should never happen
assert(self.current_state() in self.all_states())
def game_over(self):
# returns true if game is over, else false
# true if we are in a state where no actions are possible
return (self.i, self.j) not in self.actions
def all_states(self):
# possibly buggy but simple way to get all states
# either a position that has possible next actions
# or a position that yields a reward
return set(self.actions.keys()) | set(self.rewards.keys())
def standard_grid():
# define a grid that describes the reward for arriving at each state
# and possible actions at each state
# the grid looks like this
# x means you can't go there
# s means start position
# number means reward at that state
# . . . 1
# . x . -1
# s . . .
g = Grid(3, 4, (2, 0))
rewards = {(0, 3): 1, (1, 3): -1}
actions = {
(0, 0): ('D', 'R'),
(0, 1): ('L', 'R'),
(0, 2): ('L', 'D', 'R'),
(1, 0): ('U', 'D'),
(1, 2): ('U', 'D', 'R'),
(2, 0): ('U', 'R'),
(2, 1): ('L', 'R'),
(2, 2): ('L', 'R', 'U'),
(2, 3): ('L', 'U'),
}
g.set(rewards, actions)
return g
def negative_grid(step_cost=-0.1):
# in this game we want to try to minimize the number of moves
# so we will penalize every move
g = standard_grid()
g.rewards.update({
(0, 0): step_cost,
(0, 1): step_cost,
(0, 2): step_cost,
(1, 0): step_cost,
(1, 2): step_cost,
(2, 0): step_cost,
(2, 1): step_cost,
(2, 2): step_cost,
(2, 3): step_cost,
})
return g
def print_values(V, g):
for i in range(g.width):
print("---------------------------")
for j in range(g.height):
v = V.get((i,j), 0)
if v >= 0:
print(" %.2f|" % v, end="")
else:
print("%.2f|" % v, end="") # -ve sign takes up an extra space
print("")
def print_policy(P, g):
for i in range(g.width):
print("---------------------------")
for j in range(g.height):
a = P.get((i,j), ' ')
print(" %s |" % a, end="")
print("")