-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstacking.py
269 lines (245 loc) · 12.4 KB
/
stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import pandas as pd
import numpy as np
import scipy.stats as stats
import sklearn
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from torch.autograd import Variable
import xgboost as xgb
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, StackingRegressor
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, StackingClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, roc_auc_score, roc_curve
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
from sklearn.linear_model import LassoCV
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor, MLPClassifier
from sklearn.model_selection import KFold
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import RFECV
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from deepforest import CascadeForestClassifier, CascadeForestRegressor
import lightgbm as lgb
import time
import os
import re
randomstate = 42
def trainingCV_alt(estimator_, data_, label_, n_splits_):
# Metrics: AUC
# estimator_ should have fit / predict methods
# data_.index = np.linspace(0, len(data_) - 1, len(data_), dtype = int)
# label_.index = np.linspace(0, len(label_) - 1, len(label_), dtype = int)
if type(estimator_) != CascadeForestRegressor or type(estimator_) != CascadeForestClassifier:
randomstate = 42
folds = KFold(n_splits = n_splits_, shuffle = True, random_state = randomstate)
AUC_list = []
index_list = []
temp_original_value = []
temp_testing_value = []
for (train_index, test_index) in folds.split(data_):
data_train, label_train = data_.iloc[train_index,:], label_[train_index]
data_test, label_test = data_.iloc[test_index,:], label_[test_index]
estimator_.fit(data_train, label_train)
temp_original_value.append(label_test)
temp_testing_value.append(estimator_.predict(data_test))
index_list.extend(list(data_test.index))
AUC_list.append(roc_auc_score(label_test, estimator_.predict(data_test)))
mean_AUC = np.mean(AUC_list)
original_value = []
testing_value = []
for i in range(len(temp_original_value)):
temp_original_value[i] = list(temp_original_value[i])
temp_testing_value[i] = list(temp_testing_value[i])
for j in range(len(temp_original_value[i])):
original_value.append(temp_original_value[i][j])
testing_value.append(temp_testing_value[i][j])
return estimator_, mean_AUC, pd.Series(original_value, index = index_list), pd.Series(testing_value, index = index_list)
else:
data_.index = np.linspace(0, len(data_) - 1, len(data_), dtype = int)
label_.index = np.linspace(0, len(label_) - 1, len(label_), dtype = int)
randomstate = 42
folds = KFold(n_splits = n_splits_, shuffle = True, random_state = randomstate)
AUC_list = []
temp_original_value = []
temp_testing_value = []
for (train_index, test_index) in folds.split(data_):
data_train, label_train = data_.iloc[train_index,:], label_[train_index]
data_test, label_test = data_.iloc[test_index,:], label_[test_index]
estimator_.fit(data_train, label_train)
temp_original_value.append(label_test)
temp_testing_value.append(estimator_.predict(data_test))
AUC_list.append(roc_auc_score(label_test, estimator_.predict(data_test)))
mean_AUC = np.mean(AUC_list)
original_value = []
testing_value = []
for i in range(len(temp_original_value)):
temp_original_value[i] = list(temp_original_value[i])
temp_testing_value[i] = list(temp_testing_value[i])
for j in range(len(temp_original_value[i])):
original_value.append(temp_original_value[i][j])
testing_value.append(temp_testing_value[i][j])
return estimator_, mean_AUC, original_value, testing_value
def lightgbmCV(estimator_, data_, label_, n_splits_):
# Metrics: MAE
# estimator_ should have fit / predict methods
data_.index = np.linspace(0, len(data_) - 1, len(data_), dtype = int)
label_.index = np.linspace(0, len(label_) - 1, len(label_), dtype = int)
randomstate = 42
folds = KFold(n_splits = n_splits_, shuffle = True, random_state = randomstate)
MAE_list = []
booster = []
temp_original_value = []
temp_testing_value = []
i = 0
for (train_index, test_index) in folds.split(data_):
data_train, label_train = data_.iloc[train_index,:], label_[train_index]
data_test, label_test = data_.iloc[test_index,:], label_[test_index]
if i == 0:
estimator_.fit(data_train, label_train)
temp_original_value.append(label_test)
temp_testing_value.append(estimator_.predict(data_test))
else:
estimator_.fit(data_train, label_train, init_model = booster[i - 1])
temp_original_value.append(label_test)
temp_testing_value.append(estimator_.predict(data_test))
booster.append(estimator_)
MAE_list.append(mean_absolute_error(label_test, estimator_.predict(data_test)))
mean_MAE = np.mean(MAE_list)
original_value = []
testing_value = []
for i in range(len(temp_original_value)):
temp_original_value[i] = list(temp_original_value[i])
temp_testing_value[i] = list(temp_testing_value[i])
for j in range(len(temp_original_value[i])):
original_value.append(temp_original_value[i][j])
testing_value.append(temp_testing_value[i][j])
return estimator_, MAE_list, mean_MAE, original_value, testing_value
def pred_oof(estimator_, data_train_, label_train_, data_test_):
oof_train = np.zeros(len(data_train_))
oof_test = np.zeros(len(data_test_))
oof_test_folds = pd.DataFrame(data = np.zeros((len(data_test_), n)), columns = list(np.linspace(0, n - 1, n, dtype = int)))
folds = KFold(n_splits = 5, shuffle = True, random_state = randomstate)
# df21 cannot use kfolds
# df21 uses np.array
if type(estimator_) == CascadeForestRegressor or type(estimator_) == CascadeForestClassifier:
### change data_train_ sequence
folds = KFold(n_splits = 5, shuffle = True, random_state = randomstate)
temp_list = []
for train_index, test_index in folds.split(data_train_):
for item in test_index:
temp_list.append(item)
temp_data_train_ = pd.DataFrame(data = None)
for i in range(len(data_train_)):
temp_data_train_ = temp_data_train_.append([data_train_.iloc[temp_list[i]]], ignore_index = True)
temp_label_train_ = pd.Series(data = None, dtype = float)
for i in range(len(label_train_)):
temp_label_train_ = temp_label_train_.append(pd.Series(label_train_[temp_list[i]]), ignore_index = True)
estimator_.fit(np.array(temp_data_train_), np.array(temp_label_train_))
oof_train = estimator_.predict(temp_data_train_)
oof_test = estimator_.predict(data_test_)
return oof_train, oof_test
else:
i = 0
for (train_index, test_index) in folds.split(data_train_):
data_tr = data_train_.iloc[train_index,:]
label_tr = label_train_[train_index]
label_tr = label_tr.astype(int)
data_te = data_train_.iloc[test_index,:]
# print(data_te.shape)
# label_tr should be integer series
estimator_.fit(data_tr, label_tr)
oof_train[test_index] = estimator_.predict(data_te)
oof_test_folds.loc[:,i] = estimator_.predict(data_test_)
i += 1
oof_test = oof_test_folds.mean(axis = 1)
return pd.Series(oof_train), pd.Series(oof_test)
def train_stacking_models(subsetname_):
subsetname = subsetname_
new_name = re.sub("_stacking", "", subsetname, flags = 0)
# models = ["rf", "lgb", "df21", "dnn"]
models = ["rf", "lgb", "df21", "dnn", "knn"]
for model in models: # models
# print('-------------------------------------------------------------------------------------------------------------')
# print("Now trainning model: " + model)
globals()[model + "_oof_train_" + subsetname], globals()[model + "_oof_test_" + subsetname] = pred_oof(
estimator_ = globals()[model + "_reg_" + subsetname],
data_train_ = globals()["data_train_" + subsetname],
label_train_ = globals()["label_train"],
data_test_ = globals()["data_test_" + subsetname]
)
print("Training finished")
pass
def datatype_conv(subsetname_):
# models = ["rf", "lgb", "df21", "dnn"]
models = ["rf", "lgb", "df21", "dnn", "knn"]
subsetname = subsetname_
for model in models: # models
globals()[model + "_oof_test_" + subsetname] = globals()[model + "_oof_test_" + subsetname].astype(float)
globals()[model + "_oof_train_" + subsetname] = globals()[model + "_oof_train_" + subsetname].astype(float)
pass
def generate_data_layer_2(subsetname_):
subsetname = subsetname_
# models = ["rf", "lgb", "df21", "dnn"]
models = ["rf", "lgb", "df21", "dnn", "knn"]
# subsetname e.g. all
globals()["data_train_final_" + subsetname] = pd.DataFrame(data = np.empty((len(globals()["rf_oof_train_" + subsetname]), len(models))), columns = models)
globals()["data_test_final_" + subsetname] = pd.DataFrame(data = np.empty((len(globals()["rf_oof_test_" + subsetname]), len(models))), columns = models)
for model in models: # models
globals()["data_train_final_" + subsetname].loc[:,model] = globals()[model + "_oof_train_" + subsetname]
globals()["data_test_final_" + subsetname].loc[:,model] = globals()[model + "_oof_test_" + subsetname]
# combine train and test
globals()["data_final_" + subsetname] = pd.DataFrame(data = None, columns = models, dtype = int)
globals()["label_final_" + subsetname] = pd.DataFrame(data = None, columns = models, dtype = int)
globals()["data_final_" + subsetname] = pd.concat([globals()["data_train_final_" + subsetname], globals()["data_test_final_" + subsetname]], axis = 0, ignore_index = True)
globals()["label_final"] = pd.concat([globals()["label_train"], globals()["label_test"]], axis = 0, ignore_index = True)
globals()["label_final"] = globals()["label_final"].astype(int)
globals()["label_train_final"] = globals()["label_train"].astype(int)
globals()["label_test_final"] = globals()["label_test"].astype(int)
# data after concatenation e.g. data_final_all / label_final / data_test_final_all
pass
def train_final_model(subsetname_):
subsetname = subsetname_
# XGBoost
globals()["xgb_reg_" + subsetname] = xgb.XGBRegressor(
objective = "reg:squarederror",
n_estimators = 200,
max_depth = 10,
learning_rate = 0.02,
verbosity = 1,
booster = "gbtree",
tree_method = "auto",
n_jobs = -1,
subsample = 0.9,
random_state = randomstate,
importance_type = "gain"
)
# booster e.g. xgb_reg_all
# estimator_, MSE_list, mean_MSE, original_value, testing_value
# e.g. xgb_reg_all, _, xgb_all_stacking_mean_MSE, xgb_all_stacking_original, xgb_all_stacking_testing
globals()["xgb_reg_" + subsetname], _, globals()[subsetname + "_mean_AUC"], globals()[subsetname + "_original"], globals()[subsetname + "_testing"] = trainingCV(
estimator_ = globals()["xgb_reg_" + subsetname],
data_ = globals()["data_final_" + subsetname],
label_ = globals()["label_final"],
n_splits_ = 5
)
pass
def applyGridSearch(estimator_ , parameters_, data_, label_):
reg = GridSearchCV(
estimator = estimator_,
param_grid = parameters_,
n_jobs = -1,
verbose = 3,
scoring = 'neg_mean_squared_error',
refit = True,
cv = 5
)
reg.fit(data_, label_)
return reg.best_estimator_, reg.best_score_, reg.best_params_, reg.cv_results_
if __name__ == "__main__":
pass