methods | dataset | speed(fps) | [email protected] | [email protected] | Download |
---|---|---|---|---|---|
geometry constrain | kitti | ~6 | ~6 | ~23 | xxx |
OFT | kitti | xxx | xxx | 10 | xxx |
keypoint 2d | kitti | ~6 | xxx | xxx | xxx |
# keypoint 2d (use plane prediction)
# training
CUDA_VISIBLE_DEVICES=0 python train.py --cuda \
--net fpn_corners_2d \
--out_path /data/object/liangxiong/test \
--config configs/fpn_corners_2d_mono_3d_kitti_config.json \
--model /data/object/liangxiong/test/fpn_corners_3d/mono_3d_kitti/detector_600000.pth
# Note that to use --model option to load pretrained model
# (here to load pretrained 2d car detection model)
# And if you want to use multigpus just add more gpu ids
# to CUDA_VISIBLE_DEVICES and add --mGPUs option
# inference(checkpoint number)
CUDA_VISIBLE_DEVICES=1 python test.py --cuda \
--checkpoint 600000 \
--load_dir /data/object/liangxiong/test \
--net fpn_corners_2d \
--thresh 0.5 \
--dataset nuscenes \
--img_dir /data/dm202_3w/left_img \
--calib_file ./000004.txt
# --calib_file refers to single calib file
# --calib_dir refers to directory of calibs(calib format is like that of kitti)
# --img_dir refers to directory where you want to infer
# inference(model path)
CUDA_VISIBLE_DEVICES=1 python test.py --cuda \
--model ./faster_rcnn_32_3257.pth \
--config ./configs/refine_kitti_config.json
--net fpn_corners_2d \
--thresh 0.5 \
--dataset nuscenes
# note that if no dir of file is specified, use the val dataset to infer
# In the following snippet, the code of inference is omited.
# geometry constrain
CUDA_VISIBLE_DEVICES=0 python train.py --cuda \
--net fpn_mono_3d \
--out_path /data/object/liangxiong/test \
--config configs/fpn_mono_3d_kitti_config.json \
--model /data/object/liangxiong/fpn_bdd_pretrained/fpn/bdd/detector_300000.pth
# OFT
methods | dataset | speed(fps) | [email protected] | Download |
---|---|---|---|---|
fpn_faster_rcnn | kitti | x | ~86 | xxx |
faster_rcnn | kitti | xxx | xxx | xxx |
faster_rcnn | coco | ~6 | xxx | xxx |
faster_rcnn | bdd | ~6 | xxx | xxx |
faster_rcnn | nuscenes | ~6 | xxx | xxx |
ssd | nuscenes | xx | xxx | xxx |
prnet | nuscenes | xx | xxx | xxx |
# KITTI
CUDA_VISIBLE_DEVICES=1 python train.py --cuda \
--net fpn \
--out_path /data/object/liangxiong/fpn_kitti_pretrained \
--config configs/fpn_kitti_config.json
# BDD
CUDA_VISIBLE_DEVICES=1 python train.py --cuda \
--net fpn \
--out_path /data/object/liangxiong/fpn_bdd_pretrained \
--config configs/fpn_bdd_config.json
CUDA_VISIBLE_DEVICES=1 python train.py --cuda \
--net fpn \
--out_path /data/object/liangxiong/fpn_coco_pretrained \
--config configs/fpn_coco_config.json
Note that all model use the same backbone(res18_pruned)
python utils/generate_configs.py
If you just want to test the correction of your algorithm, enable DEBUG mode in file
python utils/drawer.py
For each different dataset, just to uncomment the counterpart configs is Ok