forked from aycwabtu/aycwabtu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaycwabtu_bs_block.c
388 lines (340 loc) · 11.4 KB
/
aycwabtu_bs_block.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
aycwabtu_bs_block.c
this file contains the block implementation in byte sliced form where
the sbox is a look up table. See #define USEALLBITSLICE
*/
#include <string.h>
#include "aycwabtu_config.h"
#include "aycwabtu_bs_block.h"
#ifndef USEALLBITSLICE
void aycw_block_sbox(dvbcsa_bs_word_t *);
#ifdef USEWORDBLOCKSBOX
static uint16 aycw_block_sbox16[0x10000];
#endif
const uint8 cu8_aycw_block_sbox[256] =
{
0x3a, 0xea, 0x68, 0xfe, 0x33, 0xe9, 0x88, 0x1a, 0x83, 0xcf, 0xe1, 0x7f, 0xba, 0xe2, 0x38, 0x12,
0xe8, 0x27, 0x61, 0x95, 0x0c, 0x36, 0xe5, 0x70, 0xa2, 0x06, 0x82, 0x7c, 0x17, 0xa3, 0x26, 0x49,
0xbe, 0x7a, 0x6d, 0x47, 0xc1, 0x51, 0x8f, 0xf3, 0xcc, 0x5b, 0x67, 0xbd, 0xcd, 0x18, 0x08, 0xc9,
0xff, 0x69, 0xef, 0x03, 0x4e, 0x48, 0x4a, 0x84, 0x3f, 0xb4, 0x10, 0x04, 0xdc, 0xf5, 0x5c, 0xc6,
0x16, 0xab, 0xac, 0x4c, 0xf1, 0x6a, 0x2f, 0x3c, 0x3b, 0xd4, 0xd5, 0x94, 0xd0, 0xc4, 0x63, 0x62,
0x71, 0xa1, 0xf9, 0x4f, 0x2e, 0xaa, 0xc5, 0x56, 0xe3, 0x39, 0x93, 0xce, 0x65, 0x64, 0xe4, 0x58,
0x6c, 0x19, 0x42, 0x79, 0xdd, 0xee, 0x96, 0xf6, 0x8a, 0xec, 0x1e, 0x85, 0x53, 0x45, 0xde, 0xbb,
0x7e, 0x0a, 0x9a, 0x13, 0x2a, 0x9d, 0xc2, 0x5e, 0x5a, 0x1f, 0x32, 0x35, 0x9c, 0xa8, 0x73, 0x30,
0x29, 0x3d, 0xe7, 0x92, 0x87, 0x1b, 0x2b, 0x4b, 0xa5, 0x57, 0x97, 0x40, 0x15, 0xe6, 0xbc, 0x0e,
0xeb, 0xc3, 0x34, 0x2d, 0xb8, 0x44, 0x25, 0xa4, 0x1c, 0xc7, 0x23, 0xed, 0x90, 0x6e, 0x50, 0x00,
0x99, 0x9e, 0x4d, 0xd9, 0xda, 0x8d, 0x6f, 0x5f, 0x3e, 0xd7, 0x21, 0x74, 0x86, 0xdf, 0x6b, 0x05,
0x8e, 0x5d, 0x37, 0x11, 0xd2, 0x28, 0x75, 0xd6, 0xa7, 0x77, 0x24, 0xbf, 0xf0, 0xb0, 0x02, 0xb7,
0xf8, 0xfc, 0x81, 0x09, 0xb1, 0x01, 0x76, 0x91, 0x7d, 0x0f, 0xc8, 0xa0, 0xf2, 0xcb, 0x78, 0x60,
0xd1, 0xf7, 0xe0, 0xb5, 0x98, 0x22, 0xb3, 0x20, 0x1d, 0xa6, 0xdb, 0x7b, 0x59, 0x9f, 0xae, 0x31,
0xfb, 0xd3, 0xb6, 0xca, 0x43, 0x72, 0x07, 0xf4, 0xd8, 0x41, 0x14, 0x55, 0x0d, 0x54, 0x8b, 0xb9,
0xad, 0x46, 0x0b, 0xaf, 0x80, 0x52, 0x2c, 0xfa, 0x8c, 0x89, 0x66, 0xfd, 0xb2, 0xa9, 0x9b, 0xc0,
};
/* table 19,27,55 is achieved from table 17, 35, 8,... by applying 7-x to lower 3 bits */
static const uint8 bf_key_perm[64] = {19, 27, 55, 46, 1, 15, 36, 22, 56, 61, 39, 21, 54, 58, 50, 28, 7, 29, 51, 6, 33, 35, 20, 16, 47, 30, 32, 63, 10, 11, 4, 38, 62, 26, 40, 18, 12, 52, 37, 53, 23, 59, 41, 17, 31, 0, 25, 43, 44, 14, 2, 13, 45, 48, 3, 60, 49, 8, 34, 5, 9, 42, 57, 24,};
void aycw_block_key_perm(dvbcsa_bs_word_t* in, dvbcsa_bs_word_t* out)
{
#ifndef USEFASTBLOCKKEYPERM
int i;
for(i=0; i<64; i++)
out[bf_key_perm[i]] = in[i];
#else
/* csa block key schedule bit permutation */
#define CPY(a,b) (out)[(b)] = (in)[(a)]
CPY(0 ,19 );
CPY(1 ,27 );
CPY(2 ,55 );
CPY(3 ,46 );
CPY(4 ,1 );
CPY(5 ,15 );
CPY(6 ,36 );
CPY(7 ,22 );
CPY(8 ,56 );
CPY(9 ,61 );
CPY(10,39 );
CPY(11,21 );
CPY(12,54 );
CPY(13,58 );
CPY(14,50 );
CPY(15,28 );
CPY(16,7 );
CPY(17,29 );
CPY(18,51 );
CPY(19,6 );
CPY(20,33 );
CPY(21,35 );
CPY(22,20 );
CPY(23,16 );
CPY(24,47 );
CPY(25,30 );
CPY(26,32 );
CPY(27,63 );
CPY(28,10 );
CPY(29,11 );
CPY(30,4 );
CPY(31,38 );
CPY(32,62 );
CPY(33,26 );
CPY(34,40 );
CPY(35,18 );
CPY(36,12 );
CPY(37,52 );
CPY(38,37 );
CPY(39,53 );
CPY(40,23 );
CPY(41,59 );
CPY(42,41 );
CPY(43,17 );
CPY(44,31 );
CPY(45,0 );
CPY(46,25 );
CPY(47,43 );
CPY(48,44 );
CPY(49,14 );
CPY(50,2 );
CPY(51,13 );
CPY(52,45 );
CPY(53,48 );
CPY(54,3 );
CPY(55,60 );
CPY(56,49 );
CPY(57,8 );
CPY(58,34 );
CPY(59,5 );
CPY(60,9 );
CPY(61,42 );
CPY(62,57 );
CPY(63,24 );
#endif
}
/**
Calculates expanded key
@parameter keys[in] input bitsliced key array BS_BATCH_SIZE x 64
kk[out] output bytesliced expanded key array BS_BATCH_SIZE x 448
*/
void aycw_block_key_schedule(const dvbcsa_bs_word_t* keys, dvbcsa_bs_word_t* kk)
{
int i,j;
for (i = 0; i < 64; i++)
kk[6 * 64 + i] = keys[i];
aycw_block_key_perm(&kk[6*64], &kk[5*64]);
aycw_block_key_perm(&kk[5*64], &kk[4*64]);
aycw_block_key_perm(&kk[4*64], &kk[3*64]);
aycw_block_key_perm(&kk[3*64], &kk[2*64]);
aycw_block_key_perm(&kk[2*64], &kk[1*64]);
aycw_block_key_perm(&kk[1*64], &kk[0*64]);
for (i = 6; i>0; i--) /* i = 6...1 xor 0 skipped */
{
for (j = 7; j>=0; j--)
{
switch(i)
{
case 1:
kk[1*64 + j*8 + 0]
=
BS_NOT(
kk[1*64 + j*8 + 0]
);
break;
case 2:
kk[2*64 + j*8 + 1] = BS_NOT(kk[2*64 + j*8 + 1]);
break;
case 3:
kk[3*64 + j*8 + 0] = BS_NOT(kk[3*64 + j*8 + 0]);
kk[3*64 + j*8 + 1] = BS_NOT(kk[3*64 + j*8 + 1]);
break;
case 4:
kk[4*64 + j*8 + 2] = BS_NOT(kk[4*64 + j*8 + 2]);
break;
case 5:
kk[5*64 + j*8 + 0] = BS_NOT(kk[5*64 + j*8 + 0]);
kk[5*64 + j*8 + 2] = BS_NOT(kk[5*64 + j*8 + 2]);
break;
case 6:
kk[6*64 + j*8 + 1] = BS_NOT(kk[6*64 + j*8 + 1]);
kk[6*64 + j*8 + 2] = BS_NOT(kk[6*64 + j*8 + 2]);
break;
}
}
}
}
void aycw_block_sbox(dvbcsa_bs_word_t *w)
{
#ifndef USEWORDBLOCKSBOX
// table lookup, works one byte at a time
uint8 *si = (uint8 *)w;
int i;
for (i = 0; i < BS_BATCH_BYTES; i++)
si[i] = cu8_aycw_block_sbox[si[i]];
#else
# if BS_BATCH_BYTES < 2
# error BS_BATCH_BYTES < 2
# endif
uint16 *si = (uint16 *)w;
int i;
for (i = 0; i < BS_BATCH_BYTES/2; i++)
si[i] = aycw_block_sbox16[si[i]];
#endif
}
#define SBOXSSE2(in, ret, shift) { \
uint16 u16tmp; \
u16tmp = (uint16)BS_EXTLS32(BS_SHR8(in, shift)); \
u16tmp = aycw_block_sbox16[u16tmp]; \
ret = BS_OR(ret, BS_SHL8(BS_VAL_LSDW(u16tmp), shift)); }
dvbcsa_bs_word_t aycw_block_sbox_by_value(dvbcsa_bs_word_t in)
{
/* the 8 bit lookup part (!USEWORDBLOCKSBOX) could be implemented here too... */
dvbcsa_bs_word_t ret = BS_VAL8(00);
#if PARALLEL_MODE==PARALLEL_128_SSE2
/* BS_SHR8 does not take an immediate shift count in sse2 */
SBOXSSE2(in, ret, 0);
SBOXSSE2(in, ret, 2);
SBOXSSE2(in, ret, 4);
SBOXSSE2(in, ret, 6);
SBOXSSE2(in, ret, 8);
SBOXSSE2(in, ret, 10);
SBOXSSE2(in, ret, 12);
SBOXSSE2(in, ret, 14);
SBOXSSE2(in, ret, 16);
#else
int i;
for (i = 0; i < BS_BATCH_BYTES / 2; i++)
{
uint16 u16tmp;
u16tmp = (uint16)BS_SHR8(in, 2 * i);;
u16tmp = aycw_block_sbox16[u16tmp];
ret = BS_OR(ret, BS_SHL8((dvbcsa_bs_word_t)u16tmp, 2 * i));
}
#endif
return ret;
}
/**
initialize block sbox table in RAM
*/
void aycw_init_block(void)
{
#ifdef USEWORDBLOCKSBOX
int i;
for (i=0; i<0x10000; i++)
aycw_block_sbox16[i] = (uint16)cu8_aycw_block_sbox[i/256]<<8 | cu8_aycw_block_sbox[i%256];
#endif
}
/**
Nearly the same as dvbcsa_bs_block_decrypt_register. kkmulti is now 8 times in size.
@parameter keys[in] the keys array contains the bytesliced array [56][8][BS_BATCH_BYTES] bytes but is
now treated as 56 x 8 x dvbcsa_bs_word_t.
@parameter r ts input data ib0 + some free space left in front for virtual shift
*/
void aycw_block_decrypt(const dvbcsa_bs_word_t* keys, dvbcsa_bs_word_t* r)
{
int i; // 56 rounds
int j; // 8 batches
#ifdef USEBLOCKVIRTUALSHIFT
r += 8 * 56;
#endif
// loop over kk[55]..kk[0]
for (i = 55; i >= 0; i--)
{
dvbcsa_bs_word_t *r6xK; // help pointer: r6 (before shift) after xoring with keys
dvbcsa_bs_word_t r7xS; // sbox output xor r7 (before shift), aka 'L'
dvbcsa_bs_word_t perm; // sbox out + permutation
r6xK = &r[8 * 6];
#ifdef USEBLOCKVIRTUALSHIFT
r -= 8; /* virtual shift of registers */
#endif
for (j = 0; j < 8; j++)
{
#if 1
/* calling per reference is 19% faster with MS CC but gcc decided
to optimize the whole funtion call away for some reason ?!? :-( */
dvbcsa_bs_word_t sbox_out = BS_XOR(keys[i * 8 + j], r6xK[j]);
aycw_block_sbox(&sbox_out);
#else
dvbcsa_bs_word_t sbox_out = aycw_block_sbox_by_value(BS_XOR(keys[i * 8 + j], r6xK[j]));
#endif
#ifdef BLOCKDEBUG
if (j==0) {
// debug dump slice 0 regs 'before' 1st shift
uint8 sn, wn;
dvbcsa_bs_word_t tmp1 = BS_XOR(keys[i * 8 + j], r6xK[j]);
printf("%d: %02x %02x %02x %02x %02x %02x %02x %02x r6xK %02x sout %02x\n", i,
(uint8)BS_EXTLS32(r[8 * 1]),
(uint8)BS_EXTLS32(r[8 * 2]),
(uint8)BS_EXTLS32(r[8 * 3]),
(uint8)BS_EXTLS32(r[8 * 4]),
(uint8)BS_EXTLS32(r[8 * 5]),
(uint8)BS_EXTLS32(r[8 * 6]),
(uint8)BS_EXTLS32(r[8 * 7]),
(uint8)BS_EXTLS32(r[8 * 8]),
(uint8)BS_EXTLS32(tmp1),
(uint8)BS_EXTLS32(sbox_out)
);
}
#endif
// bit permutation
perm =
BS_OR(
BS_OR(
BS_OR (
BS_SHL (BS_AND (sbox_out, BS_VAL8(29)), 1),
BS_SHL (BS_AND (sbox_out, BS_VAL8(02)), 6)
),
BS_OR (
BS_SHL (BS_AND (sbox_out, BS_VAL8(04)), 3),
BS_SHR (BS_AND (sbox_out, BS_VAL8(10)), 2)
)
),
BS_OR(
BS_SHR (BS_AND (sbox_out, BS_VAL8(40)), 6),
BS_SHR(BS_AND(sbox_out, BS_VAL8(80)), 4)
)
);
#ifdef USEBLOCKVIRTUALSHIFT
r7xS = BS_XOR(r[8 * 8 + j], sbox_out);
r[8 * 0 + j] = r7xS;
BS_XOREQ(r[8 * 2 + j], r7xS);
BS_XOREQ(r[8 * 3 + j], r7xS);
BS_XOREQ(r[8 * 4 + j], r7xS);
BS_XOREQ(r[8 * 6 + j], perm);
#else
r7xS = BS_XOR(r[8 * 7 + j], sbox_out);
r[8 * 7 + j] = r[8 * 6 + j];
r[8 * 6 + j] = BS_XOR(r[8 * 5 + j], perm);
r[8 * 5 + j] = r[8 * 4 + j];
r[8 * 4 + j] = BS_XOR(r[8 * 3 + j], r7xS);
r[8 * 3 + j] = BS_XOR(r[8 * 2 + j], r7xS);
r[8 * 2 + j] = BS_XOR(r[8 * 1 + j], r7xS);
r[8 * 1 + j] = r[8 * 0 + j];
r[8 * 0 + j] = r7xS;
#endif
}
}
}
int aycw_checkPESheader(dvbcsa_bs_word_t *data, dvbcsa_bs_word_t *candidates)
{
dvbcsa_bs_word_t tmp, c;
int i, j, ret;
uint8 a;
c = BS_VAL8(00);
ret = 0;
// every 8 elements in bytesliced data array are belong to the same data block
for (i = 0; i < 8; i++)
{
// check also for 4th byte Audio streams (0xC0-0xDF), Video streams (0xE0-0xEF) ?
tmp = BS_OR(BS_OR(data[i], data[i + 8]), BS_XOR(data[i + 16], BS_VAL8(01))); // 0x00 | 0x00 | 0x01^0x01 == 0x00
for (j = 0; j < BS_BATCH_BYTES; j++)
{
a = BS_EXTRACT8(tmp, j);
if (a == 0)
{
// key candidate found in bytesliced data array at i, j
*candidates = c = BS_OR(c, BS_SHL(BS_VAL_LSDW(1), i*BS_BATCH_BYTES + j));
return j+1; // TODO: ensure that we are allowed
//ret++;
}
}
}
*candidates = c;
return ret;
}
#endif //#ifndef USEALLBITSLICE