-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
182 lines (149 loc) · 5.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import os
import yaml
import shutil
import torch
import random
from torchvision import transforms
import torchvision.utils as vutils
from torch.utils.data import DataLoader
import torchvision.transforms.functional as TF
from dataset import FSGDataset
def make_result_folders(output_directory, remove_first=True):
if remove_first:
if os.path.exists(output_directory):
shutil.rmtree(output_directory)
image_directory = os.path.join(output_directory, 'images')
if not os.path.exists(image_directory):
print("Creating directory: {}".format(image_directory))
os.makedirs(image_directory)
checkpoint_directory = os.path.join(output_directory, 'checkpoints')
if not os.path.exists(checkpoint_directory):
print("Creating directory: {}".format(checkpoint_directory))
os.makedirs(checkpoint_directory)
log_directory = os.path.join(output_directory, 'logs')
if not os.path.exists(log_directory):
print("Creating directory: {}".format(log_directory))
os.makedirs(log_directory)
return checkpoint_directory, image_directory, log_directory
def write_loss(iterations, trainer, train_writer):
members = [attr for attr in dir(trainer)
if ((not callable(getattr(trainer, attr))
and not attr.startswith("__"))
and ('loss' in attr
or 'grad' in attr
or 'nwd' in attr
or 'accuracy' in attr
or 'obsv' in attr))]
for m in members:
train_writer.add_scalar(m, getattr(trainer, m), iterations + 1)
def write_image(iterations, dir, im_ins, im_outs, format='jpeg'):
B, K1, C, H, W = im_ins.size()
B, K2, C, H, W = im_outs.size()
file_name = os.path.join(dir, '%08d' % (iterations + 1) + '.' + format)
image_tensor = torch.cat([im_ins, im_outs], dim=1)
image_tensor = image_tensor.view(B*(K1+K2), C, H, W)
image_grid = vutils.make_grid(image_tensor.data, nrow=K1+K2, padding=0, normalize=True)
vutils.save_image(image_grid, file_name, nrow=1, format=format)
def get_config(config):
with open(config, 'r') as stream:
return yaml.load(stream, Loader=yaml.FullLoader)
def get_loader(dataset, root, mode, n_sample, num_for_seen, batch_size, num_workers, shuffle, drop_last,
new_size=None, height=28, width=28, crop=False, center_crop=False):
assert dataset in ['flower', 'vggface', 'animal']
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
if center_crop:
transform_list = [transforms.CenterCrop((height, width))] + \
transform_list if crop else transform_list
else:
transform_list = [transforms.RandomCrop((height, width))] + \
transform_list if crop else transform_list
transform_list = [transforms.Resize(new_size)] + transform_list \
if new_size is not None else transform_list
transform = transforms.Compose(transform_list)
dataset = FSGDataset(root, mode, num_for_seen, n_sample, transform)
loader = DataLoader(dataset,
batch_size,
shuffle=shuffle,
drop_last=drop_last,
num_workers=num_workers)
return loader
def get_loaders(conf):
dataset = conf['dataset']
root = conf['data_root']
batch_size = conf['batch_size']
num_workers = conf['num_workers']
train_loader = get_loader(
dataset=dataset,
root=root,
mode='train',
n_sample=conf['n_sample_train'],
num_for_seen=conf['dis']['num_classes'],
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
drop_last=True
)
test_loader = get_loader(
dataset=dataset,
root=root,
mode='test',
n_sample=conf['n_sample_test'],
num_for_seen=conf['dis']['num_classes'],
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
drop_last=False
)
return train_loader, test_loader
def unloader(img):
img = (img + 1) / 2
tf = transforms.Compose([
transforms.ToPILImage()
])
return tf(img)
def get_model_list(dirname, key):
if os.path.exists(dirname) is False:
return None
gen_models = [os.path.join(dirname, f) for f in os.listdir(dirname) if
os.path.isfile(os.path.join(dirname, f)) and
key in f and ".pt" in f]
if gen_models is None:
return None
gen_models.sort()
last_model_name = gen_models[-1]
return last_model_name
def batched_index_select(input, dim, index):
views = [input.shape[0]] + [1 if i != dim else -1 for i in range(1, len(input.shape))]
expanse = list(input.shape)
expanse[0] = -1
expanse[dim] = -1
index = index.view(views)
index = index.expand(expanse)
return torch.gather(input, dim, index)
def batched_scatter(input, dim, index, src):
views = [input.shape[0]] + [1 if i != dim else -1 for i in range(1, len(input.shape))]
expanse = list(input.shape)
expanse[0] = -1
expanse[dim] = -1
index = index.view(views)
index = index.expand(expanse)
return torch.scatter(input, dim, index, src)
def cal_para(model):
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Number of params: %.3fM' % (trainable_num / 1e6))
class RotationTransform:
"""Rotate by one of the given angles."""
def __init__(self, angles):
self.angles = angles
def __call__(self, x):
angle = random.choice(self.angles)
return TF.rotate(x, angle)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')