From 928b9393daac252d0b6c4c9dd277d549b3dad8e9 Mon Sep 17 00:00:00 2001 From: rockerBOO Date: Wed, 20 Nov 2024 11:15:30 -0500 Subject: [PATCH 1/3] Allow unknown schedule-free optimizers to continue to module loader --- library/train_util.py | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) diff --git a/library/train_util.py b/library/train_util.py index 25cf7640d..74050880a 100644 --- a/library/train_util.py +++ b/library/train_util.py @@ -4600,7 +4600,7 @@ def task(): def get_optimizer(args, trainable_params): # "Optimizer to use: AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, AdEMAMix8bit, PagedAdEMAMix8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, Adafactor" - + optimizer_type = args.optimizer_type if args.use_8bit_adam: assert ( @@ -4874,6 +4874,7 @@ def get_optimizer(args, trainable_params): optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs) elif optimizer_type.endswith("schedulefree".lower()): + should_train_optimizer = True try: import schedulefree as sf except ImportError: @@ -4885,10 +4886,10 @@ def get_optimizer(args, trainable_params): optimizer_class = sf.SGDScheduleFree logger.info(f"use SGDScheduleFree optimizer | {optimizer_kwargs}") else: - raise ValueError(f"Unknown optimizer type: {optimizer_type}") - optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs) - # make optimizer as train mode: we don't need to call train again, because eval will not be called in training loop - optimizer.train() + optimizer_class = None + + if optimizer_class is not None: + optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs) if optimizer is None: # 任意のoptimizerを使う @@ -4990,6 +4991,10 @@ def __instancecheck__(self, instance): optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__ optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()]) + if hasattr(optimizer, 'train') and callable(optimizer.train): + # make optimizer as train mode: we don't need to call train again, because eval will not be called in training loop + optimizer.train() + return optimizer_name, optimizer_args, optimizer From 87f5224e2d19254748158939cbca75802fc024f2 Mon Sep 17 00:00:00 2001 From: rockerBOO Date: Wed, 20 Nov 2024 11:57:15 -0500 Subject: [PATCH 2/3] Support d*lr for ProdigyPlus optimizer --- train_network.py | 27 ++++++++++++++++++++++++++- 1 file changed, 26 insertions(+), 1 deletion(-) diff --git a/train_network.py b/train_network.py index bbf381f99..65962bd74 100644 --- a/train_network.py +++ b/train_network.py @@ -61,6 +61,7 @@ def generate_step_logs( avr_loss, lr_scheduler, lr_descriptions, + optimizer=None, keys_scaled=None, mean_norm=None, maximum_norm=None, @@ -93,6 +94,30 @@ def generate_step_logs( logs[f"lr/d*lr/{lr_desc}"] = ( lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"] ) + if ( + args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None + ): # tracking d*lr value of unet. + logs["lr/d*lr"] = ( + optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"] + ) + else: + idx = 0 + if not args.network_train_unet_only: + logs["lr/textencoder"] = float(lrs[0]) + idx = 1 + + for i in range(idx, len(lrs)): + logs[f"lr/group{i}"] = float(lrs[i]) + if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): + logs[f"lr/d*lr/group{i}"] = ( + lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"] + ) + if ( + args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None + ): + logs[f"lr/d*lr/group{i}"] = ( + optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"] + ) return logs @@ -1279,7 +1304,7 @@ def remove_model(old_ckpt_name): if len(accelerator.trackers) > 0: logs = self.generate_step_logs( - args, current_loss, avr_loss, lr_scheduler, lr_descriptions, keys_scaled, mean_norm, maximum_norm + args, current_loss, avr_loss, lr_scheduler, lr_descriptions, optimizer, keys_scaled, mean_norm, maximum_norm ) accelerator.log(logs, step=global_step) From 6593cfbec14c0be70407b5d6d85d569ecf8160f1 Mon Sep 17 00:00:00 2001 From: rockerBOO Date: Thu, 21 Nov 2024 14:41:37 -0500 Subject: [PATCH 3/3] Fix d * lr step log --- train_network.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/train_network.py b/train_network.py index 65962bd74..c236a2c95 100644 --- a/train_network.py +++ b/train_network.py @@ -116,7 +116,7 @@ def generate_step_logs( args.optimizer_type.lower().endswith("ProdigyPlusScheduleFree".lower()) and optimizer is not None ): logs[f"lr/d*lr/group{i}"] = ( - optimizer.param_groups[0]["d"] * optimizer.param_groups[0]["lr"] + optimizer.param_groups[i]["d"] * optimizer.param_groups[i]["lr"] ) return logs