-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
77 lines (67 loc) · 2.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from custom_vit import VIT_Base_Deep # Import your custom ViT model
import os
# Define data transforms for train and test sets
train_transform = transforms.Compose([
transforms.RandomRotation(degrees=15),
transforms.RandomHorizontalFlip(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Imagenet normalization
])
test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Imagenet normalization
])
# Define data loaders
train_data = datasets.ImageFolder(root='train_data_path', transform=train_transform)
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
test_data = datasets.ImageFolder(root='test_data_path', transform=test_transform)
test_loader = DataLoader(test_data, batch_size=64, shuffle=False)
# Define the model
model = VIT_Base_Deep()
# Move the model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training the model
num_epochs = 10
for epoch in range(num_epochs):
model.train()
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
angle_output, product_output = model(inputs)
loss_product = criterion(product_output, labels[:, 0]) # Product label loss
loss_angle = criterion(angle_output, labels[:, 1]) # Camera angle label loss
total_loss = loss_product + loss_angle # Combine both losses
total_loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Total Loss: {total_loss.item():.4f}')
# Evaluation
model.eval()
correct_product = 0
total_product = 0
correct_angle = 0
total_angle = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
angle_output, product_output = model(inputs)
_, predicted_product = torch.max(product_output.data, 1)
_, predicted_angle = torch.max(angle_output.data, 1)
total_product += labels.size(0)
total_angle += labels.size(0)
correct_product += (predicted_product == labels[:, 0]).sum().item()
correct_angle += (predicted_angle == labels[:, 1]).sum().item()
accuracy_product = 100 * correct_product / total_product
accuracy_angle = 100 * correct_angle / total_angle
print(f'Test Product Label Accuracy: {accuracy_product:.2f}%')
print(f'Test Camera Angle Label Accuracy: {accuracy_angle:.2f}%')