Skip to content

Latest commit

 

History

History

dlami-wth-aws-neuron

Using Amazon Deep Learning AMI (DLAMI) with AWS Neuron

The cdk.json file tells the CDK Toolkit how to execute your app.

This project is set up like a standard Python project. The initialization process also creates a virtualenv within this project, stored under the .venv directory. To create the virtualenv it assumes that there is a python3 (or python for Windows) executable in your path with access to the venv package. If for any reason the automatic creation of the virtualenv fails, you can create the virtualenv manually.

To manually create a virtualenv on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

(.venv) $ pip install -r requirements.txt

To add additional dependencies, for example other CDK libraries, just add them to your setup.py file and rerun the pip install -r requirements.txt command.

Before synthesizing the CloudFormation, you should set approperly the cdk context configuration file, cdk.context.json.

For example:

{
  "instance_type": "g5.xlarge",
  "dlami_name": "Deep Learning AMI GPU PyTorch 1.13.1 (Ubuntu 20.04) 20230818",
  "vpc_name": "default"
}

At this point, you can now synthesize the CloudFormation template for this code.

(.venv) $ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-identity --query Account --output text)
(.venv) $ export CDK_DEFAULT_REGION=$(aws configure get region)
(.venv) $ cdk synth --all

Use cdk deploy command to create all the stacks at once.

(.venv) $ cdk deploy --all

Set up to access Jupyter Lab Server on Local MacOS PC

The deployment might take about 10 minutes.
After then, you can access to the jupyter server through the browser by the following instructions.

Configure a Linux or macOS Client

  1. Open a terminal on your local PC.

  2. Connect the EC2 instance.
    You can connect to an EC2 instance using the EC2 Instance Connect CLI.
    Install ec2instanceconnectcli python package and Use the mssh command with the instance ID as follows.

    $ sudo pip install ec2instanceconnectcli
    $ mssh -r {region (i.e., us-east-1)} ubuntu@i-001234a4bf70dec41EXAMPLE # ubuntu: Ubuntu Linux's user name
    

Run Jupyter Lab on the DLAMI EC2 Instance

  1. Set up Neuron by following the AWS Neuron Setup Guide
    For example, in order to set up PyTorch Neuron(torch-neuron) for Amazon Inf1 on Ubuntu 20 (DAMLI Pytorch AMI), see the PyTorch Neuron (torch-neuron) Setup on Ubuntu 20 with DLAMI Base guide

  2. Run Jupyter Lab by running the command:

    $ mssh -r {region (i.e., us-east-1)} ubuntu@i-001234a4bf70dec41EXAMPLE
    =============================================================================
        __|  __|_  )
        _|  (     /   Deep Learning AMI GPU PyTorch 1.13.1 (Ubuntu 20.04)
       ___|\___|___|
    =============================================================================
    
    Welcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.15.0-1041-aws x86_64v)
    ...
    ubuntu@ip-172-31-13-101:~$ python3.8 -m venv aws_neuron_venv_pytorch_inf1
    ubuntu@ip-172-31-13-101:~$ source aws_neuron_venv_pytorch_inf1/bin/activate
    (aws_neuron_venv_pytorch_inf1) ubuntu@ip-172-31-13-101:~$ jupyter lab --no-browser
    ...
    [I 2023-10-14 13:19:42.355 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    [C 2023-10-14 13:19:42.357 ServerApp]
    
       To access the server, open this file in a browser:
          file:///home/ubuntu/.local/share/jupyter/runtime/jpserver-36968-open.html
       Or copy and paste one of these URLs:
          http://localhost:8888/lab?token=168f50883c5c5a78cca01b2d436f0b79e6446d16394276a7
          http://127.0.0.1:8888/lab?token=168f50883c5c5a78cca01b2d436f0b79e6446d16394276a7
    [I 2023-10-14 13:19:42.373 ServerApp] Skipped non-installed server(s): bash-language-server, dockerfile-language-server-nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-server, r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, yaml-language-server
    

Access Jupyter Lab on the local PC

  1. Open another terminal on your local PC and do ssh tunneling by running the command:
    $ mssh -r {region (i.e., us-east-1)} ubuntu@i-001234a4bf70dec41EXAMPLE -N -L 8888:localhost:8888
    
  2. In the address bar of your browser, copy and paste one of the URLs shown in the console when launching jupyter lab.
    For example, http://localhost:8888/lab?token=168f50883c5c5a78cca01b2d436f0b79e6446d16394276a7 jupyter-lab-with-aws-neuron

Compile the model for AWS Inferentia with NeuronSDK

  1. If you want to compile the model for AWS Inferentia with PyTorch Neuron (torch-neuron), refer to the aws-neuron-samples/torch-neuron

Clean Up

Delete the CloudFormation stacks by running the below command.

(.venv) $ cdk destroy --all

Useful commands

  • cdk ls list all stacks in the app
  • cdk synth emits the synthesized CloudFormation template
  • cdk deploy deploy this stack to your default AWS account/region
  • cdk diff compare deployed stack with current state
  • cdk docs open CDK documentation

Enjoy!

References