Skip to content

Latest commit

 

History

History

Hosting OpenAI Whisper Model on Amazon SageMaker Asynchronous Inference Endpoint using SageMaker JumpStart

This is a CDK Python project to host the OpenAI Whisper model on Amazon SageMaker Asynchronous Inference Endpoint.

OpenAI Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680 thousand hours of labelled data, Whisper models demonstrate a strong ability to generalize to many datasets and domains without the need for fine-tuning. Sagemaker JumpStart is the machine learning (ML) hub of SageMaker that provides access to foundation models in addition to built-in algorithms and end-to-end solution templates to help you quickly get started with ML.

The cdk.json file tells the CDK Toolkit how to execute your app.

This project is set up like a standard Python project. The initialization process also creates a virtualenv within this project, stored under the .venv directory. To create the virtualenv it assumes that there is a python3 (or python for Windows) executable in your path with access to the venv package. If for any reason the automatic creation of the virtualenv fails, you can create the virtualenv manually.

To manually create a virtualenv on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

(.venv) $ pip install -r requirements.txt

To add additional dependencies, for example other CDK libraries, just add them to your setup.py file and rerun the pip install -r requirements.txt command.

Set up cdk.context.json

Then, you should set approperly the cdk context configuration file, cdk.context.json.

For example,

{
  "jumpstart_model_info": {
    "model_id": "huggingface-asr-whisper-medium",
    "version": "3.0.0"
  }
}

ℹ️ The model_id, and version provided by SageMaker JumpStart can be found in SageMaker Built-in Algorithms with pre-trained Model Table.

Deploy

At this point you can now synthesize the CloudFormation template for this code.

(.venv) $ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-identity --query Account --output text)
(.venv) $ export CDK_DEFAULT_REGION=$(aws configure get region)
(.venv) $ cdk synth --all

Use cdk deploy command to create the stack shown above.

(.venv) $ cdk deploy --require-approval never --all

Clean Up

Delete the CloudFormation stack by running the below command.

(.venv) $ cdk destroy --force --all

Useful commands

  • cdk ls list all stacks in the app
  • cdk synth emits the synthesized CloudFormation template
  • cdk deploy deploy this stack to your default AWS account/region
  • cdk diff compare deployed stack with current state
  • cdk docs open CDK documentation

Enjoy!

References