-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
320 lines (256 loc) · 11.3 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.models as models
from torch.utils.data import random_split
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import random
import time
import os
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from utils import ignore_nii, ignore_noncovid, iou_pytorch, convert_to_binary, AttrDict
def run_validation_step(args, epoch, model, loader, feature_extractor):
model.eval() # Change model to 'eval' mode (BN uses moving mean/var).
losses = []
ious = []
with torch.no_grad():
for i, (images, masks,raw_input) in enumerate(loader):
if args.gpu:
images = images.cuda()
masks = masks.cuda()
raw_input = raw_input.cuda()
feature = feature_extractor(raw_input)
output = model(images.float(),feature)
# pred_seg_masks = output["out"]
output_predictions = output.argmax(0)
loss = compute_loss(output, masks.squeeze(1).long())
iou = iou_pytorch(output, masks.squeeze(1).long())
losses.append(loss.data.item())
ious.append(iou.data.item())
val_loss = np.mean(losses)
val_iou = np.mean(ious)
return val_loss, val_iou
def train(args, model, feature_extractor):
# Set the maximum number of threads to prevent crash
torch.set_num_threads(5)
# Numpy random seed
np.random.seed(args.seed)
# Save directory
# Create the outputs folder if not created already
save_dir = "outputs/" + args.experiment_name
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Adam Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.learn_rate)
train_loader, valid_loader = initialize_loader(training_data,valid_data,args.train_batch_size,args.val_batch_size)
print("Beginning training ...")
if args.gpu:
model.cuda()
start = time.time()
trn_losses = []
val_losses = []
val_ious = []
best_iou = 0.0
for epoch in range(args.epochs):
# Train the Model
model.train() # Change model to 'train' mode
start_tr = time.time()
losses = []
for i, (images, masks, raw_input) in enumerate(train_loader):
if args.gpu:
images = images.cuda()
masks = masks.cuda()
raw_input = raw_input.cuda()
features = feature_extractor(raw_input)
# Forward + Backward + Optimize
optimizer.zero_grad()
output = model(images.float(),features)
# pred_seg_masks = output["out"])
# _, pred_labels = torch.max(output, 1, keepdim=True)
loss = compute_loss(output, masks.squeeze(1).long())
loss.backward()
optimizer.step()
losses.append(loss.data.item())
# plot training images
trn_loss = np.mean(losses)
trn_losses.append(trn_loss)
time_elapsed = time.time() - start_tr
print('Epoch [%d/%d], Loss: %.4f, Time (s): %d' % (
epoch+1, args.epochs, trn_loss, time_elapsed))
# Evaluate the model
start_val = time.time()
val_loss, val_iou = run_validation_step(args,
epoch,
model,
valid_loader, feature_extractor)
if val_iou > best_iou:
best_iou = val_iou
torch.save(model.state_dict(), os.path.join(save_dir, args.checkpoint_name + '-best.ckpt'))
time_elapsed = time.time() - start_val
print('Epoch [%d/%d], Loss: %.4f, mIOU: %.4f, Validation time (s): %d' % (
epoch+1, args.epochs, val_loss, val_iou, time_elapsed))
val_losses.append(val_loss)
val_ious.append(val_iou)
# Plot training curve
plt.figure()
# plt.plot(trn_losses, "ro-", label="Train")
# plt.plot(val_losses, "go-", label="Validation")
plt.plot(trn_losses, label="Train")
plt.plot(val_losses, label="Validation")
plt.legend()
plt.title("Loss")
plt.xlabel("Epochs")
plt.savefig(save_dir+"/training_curve.png")
# Plot validation iou curve
plt.figure()
plt.plot(val_ious, "ro-", label="mIOU")
plt.legend()
plt.title("mIOU")
plt.xlabel("Epochs")
plt.savefig(save_dir+"/val_iou_curve.png")
print('Saving model...')
torch.save(model.state_dict(), os.path.join(save_dir, args.checkpoint_name + '-{}-last.ckpt'.format(args.epochs)))
print('Best model achieves mIOU: %.4f' % best_iou)
def compute_loss(pred, gt):
loss = F.cross_entropy(pred, gt,weight=torch.Tensor([0.1,4.15]).cuda())
return loss
class baseline_autoEncoder(nn.Module):
def __init__(self):
super(baseline_autoEncoder, self).__init__()
self.encoder = nn.Sequential( # like the Composition layer you built
nn.Conv2d(1, 16, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 7),
nn.ReLU(),
nn.Conv2d(64, 128, 7),
nn.ReLU(),
nn.Conv2d(128, 256, 7),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(256, 128, 7),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, 7),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, 7),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 2, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
def main(classification_data_path,segmentation_img_path,segmentation_mask_path):
# Classification Baseline
data_path_rndForest = classification_data_path
transform_rndForest = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
data_rndForest = torchvision.datasets.ImageFolder(root=data_path_rndForest,transform=transform_rndForest)
# Calculate split lengths
total_size_rndForest = len(data_rndForest)
train_size_rndForest = round(0.7*total_size_rndForest)
test_size_rndForest = round(0.3*total_size_rndForest)
train_set_rndForest, test_set_rndForest = torch.utils.data.random_split(data_rndForest, [train_size_rndForest,test_size_rndForest] )
# Seperate random Forest Data into images and labels
train_set_imgs_rndForest = []
train_set_labels_rndForest = []
test_set_imgs_rndForest = []
test_set_labels_rndForest = []
count = 1
for data in train_set_rndForest:
clear_output(wait=True)
print("Current random Forest split progress:", count, "/",len(data_rndForest))
train_set_imgs_rndForest.append(data[0])
train_set_labels_rndForest.append(data[1])
count += 1
for data in test_set_rndForest:
clear_output(wait=True)
print("Current random Forest split progress:", count, "/",len(data_rndForest))
test_set_imgs_rndForest.append(data[0])
test_set_labels_rndForest.append(data[1])
count += 1
train_set_imgs_rndForest = torch.stack(train_set_imgs_rndForest)
train_set_labels_rndForest = np.array(train_set_labels_rndForest)
test_set_imgs_rndForest = torch.stack(test_set_imgs_rndForest)
test_set_labels_rndForest = np.array(test_set_labels_rndForest)
# Classification Baseline Model
# 1-Random Forest (From Scikit Learn)
baseLine_rndForest = RandomForestClassifier(max_depth=2, random_state=0)
# Train randomForest
with torch.no_grad():
trainFeature = resnet18(train_set_imgs_rndForest)
testFeature = resnet18(test_set_imgs_rndForest)
baseLine_rndForest.fit(trainFeature, train_set_labels_rndForest)
# Test randomForest Accuracy
pred = baseLine_rndForest.predict(testFeature)
correct = (pred == test_set_labels_rndForest).sum()
total = testFeature.shape[0]
print("Random Forest Accuracy is: ", correct/total*100)
#############################################################################################################################################
# Segmentation Baseline Model
data_path_img_autoEncoder = segmentation_img_path
data_path_mask_autoEncoder = segmentation_mask_path
transform_autoEncoder = transforms.Compose([
transforms.Resize(224),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
])
transform_feature_extractor = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
])
data_img_feature_extractor = torchvision.datasets.ImageFolder(root=data_path_img_autoEncoder,transform=transform_feature_extractor,is_valid_file=ignore_noncovid)
data_img_autoEncoder = torchvision.datasets.ImageFolder(root=data_path_img_autoEncoder,transform=transform_autoEncoder,is_valid_file=ignore_noncovid)
data_mask_autoEncoder = torchvision.datasets.ImageFolder(root=data_path_mask_autoEncoder,transform=transform_autoEncoder,is_valid_file=ignore_nii)
print('the number of images match=',len(data_img_autoEncoder) == len(data_mask_autoEncoder))
# Build (image,Mask) pairs
data_autoEncoder = []
for i in range(len(data_img_autoEncoder)):
data_autoEncoder.append((data_img_autoEncoder[i][0],data_mask_autoEncoder[i][0],data_img_feature_extractor[i][0]))
# Training:Validation:Test = 0.7:0.15:0.15
random.seed(14)
random.shuffle(data_autoEncoder)
train_index = int(len(data_autoEncoder) * 0.7)
val_index = int(len(data_autoEncoder) * 0.85)
training_data = data_autoEncoder[:train_index]
valid_data = data_autoEncoder[train_index:val_index]
test_data = data_autoEncoder[val_index:]
print("# Train Set: " + str(len(training_data)))
print("# Test Set: " + str(len(test_data)))
print("# Val Set: " + str(len(valid_data)))
# Baseline Hyperparameters
args_baseline = AttrDict()
args_dict = {
'gpu':True,
'checkpoint_name':"baseline_segmentation",
'learn_rate':0.1,
'train_batch_size':64,
'val_batch_size': 256,
'epochs':10,
'seed':0,
'experiment_name': 'baseline_segmentation',
}
args_baseline.update(args_dict)
# Train baseline model
baseline_segmentation = baseline_autoEncoder()
train(args_baseline,baseline_segmentation)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Classification and Segmentation Baseline Model')
parser.add_argument('classification_data_path', help='path to classification data folder')
parser.add_argument('segmentation_img_path', help='path to segmentation images folder')
parser.add_argument('segmentation_mask_path', help='path to segmentation masks folder')
args = parser.parse_args()
main(args.classification_data_path,args.segmentation_img_path,args.segmentation_mask_path)