forked from jiwonlee-0218/ESTA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfivefold_main.py
367 lines (249 loc) · 12.2 KB
/
fivefold_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
import random
import matplotlib.pyplot as plt
import torch
import os
import util
import argparse
import numpy as np
from dataset import *
from main_model import *
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from sklearn import metrics
import glob
def writelog(file, line):
file.write(line + '\n')
print(line)
def step(model, criterion, inputs, label, device='cpu', optimizer=None):
if optimizer is None: model.eval()
else: model.train()
# run model
logit, st_attention = model(inputs.to(device))
loss = criterion(logit, label.to(device))
# optimize model
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss, logit, st_attention
def training_function(args):
# make directories
os.makedirs(os.path.join(args.targetdir, 'model'), exist_ok=True)
os.makedirs(os.path.join(args.targetdir, 'summary'), exist_ok=True)
# GPU Configuration
gpu_id = args.gpu_id
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# define dataset
dataset = DatasetHCPTask(args.sourcedir, roi=args.roi, crop_length=args.standardized_length, k_fold=args.k_fold)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
# resume checkpoint if file exists
if os.path.isfile(os.path.join(args.targetdir, 'checkpoint.pth')):
print('resuming checkpoint experiment')
checkpoint = torch.load(os.path.join(args.targetdir, 'checkpoint.pth'), map_location=device)
else:
checkpoint = {
'fold': 0,
'loss' : 0,
'epoch': 0,
'model_state_dict': None,
'optimizer_state_dict': None,
'scheduler': None}
# start experiment
for k in range(checkpoint['fold'], args.k_fold):
# make directories per fold
os.makedirs(os.path.join(args.targetdir, 'model', str(k)), exist_ok=True)
os.makedirs(os.path.join(args.targetdir, 'model_weights', str(k)), exist_ok=True)
# set dataloader
dataset.set_fold(k, train=True)
# define model
batch = args.batch_size
time = dataset.standardized_length
roi = dataset.num_nodes
n_labels= dataset.num_classes
spa_hidden_dim = 64
hidden_dim = 128
model = ESTANetwork(roi, hidden_dim, spa_hidden_dim, time, n_labels)
model.to(device)
if checkpoint['model_state_dict'] is not None: model.load_state_dict(checkpoint['model_state_dict'])
criterion = torch.nn.CrossEntropyLoss()
# define optimizer and learning rate scheduler
optimizer = torch.optim.Adam(model.parameters(), betas=(0.9, 0.999), lr=args.lr_ae, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=args.max_lr, epochs=args.epochs_ae, steps_per_epoch=len(dataloader), pct_start=0.2, div_factor=args.max_lr/args.lr_ae, final_div_factor=1000)
if checkpoint['optimizer_state_dict'] is not None: optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if checkpoint['scheduler'] is not None: scheduler.load_state_dict(checkpoint['scheduler'])
# define logging objects
summary_writer = SummaryWriter(os.path.join(args.targetdir, 'summary', str(k), 'train'), )
summary_writer_val = SummaryWriter(os.path.join(args.targetdir, 'summary', str(k), 'val'), )
best_score = 0.0
# start training
for epoch in range(checkpoint['epoch'], args.epochs_ae):
dataset.set_fold(k, train=True)
loss_accumulate = 0.0
acc_accumulate = 0.0
for i, x in enumerate(tqdm(dataloader, ncols=60, desc=f'k:{k} e:{epoch}')):
# process input data
inputs = x['timeseries']
label = x['label']
loss, logit, attention = step(
model = model,
criterion = criterion,
inputs = inputs,
label = label,
device=device,
optimizer=optimizer
)
loss_accumulate += loss.detach().cpu().numpy()
pred = logit.argmax(1)
acc_accumulate += ( torch.sum(pred.cpu() == label).item() / batch )
if scheduler is not None:
scheduler.step()
total_loss = loss_accumulate / len(dataloader)
total_acc = acc_accumulate / len(dataloader)
# summarize results
summary_writer.add_scalar('training loss', total_loss, epoch)
summary_writer.add_scalar("training acc", total_acc, epoch)
print()
print('loss for epoch {} is : {}'.format(epoch, total_loss))
print('acc for epoch {} is : {}'.format(epoch, total_acc))
# eval
dataset.set_fold(k, train=False)
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
for i, x in enumerate(dataloader):
with torch.no_grad():
# process input data
inputs = x['timeseries']
label = x['label']
val_loss, val_logit, val_attention = step(
model=model,
criterion=criterion,
inputs = inputs,
label=label,
device=device,
optimizer=None,
)
pred = val_logit.argmax(1).cpu().numpy()
predict_all = np.append(predict_all, pred)
labels_all = np.append(labels_all, label)
val_acc = metrics.accuracy_score(labels_all, predict_all)
print('val_acc for epoch {} is : {}'.format(epoch, val_acc))
summary_writer_val.add_scalar('val acc', val_acc, epoch)
if best_score < val_acc:
best_score = val_acc
best_epoch = epoch
torch.save({
'fold': k,
'loss': total_loss,
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()},
os.path.join(args.targetdir, 'model_weights', str(k), 'checkpoint_epoch_{}.pth'.format(epoch)))
f = open(os.path.join(args.targetdir, 'model', str(k), 'best_acc.log'), 'a')
writelog(f, 'best_acc: %.4f for epoch: %d' % (best_score, best_epoch))
f.close()
print()
print('-----------------------------------------------------------------')
# finalize fold
torch.save(model.state_dict(), os.path.join(args.targetdir, 'model', str(k), 'model.pth'))
checkpoint.update({'loss' : 0, 'epoch': 0, 'model': None, 'optimizer': None, 'scheduler': None})
summary_writer.close()
summary_writer_val.close()
def tt_function(args):
os.makedirs(os.path.join(args.targetdir, 'attention'), exist_ok=True)
# GPU Configuration
gpu_id = args.gpu_id
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# define dataset
dataset = DatasetHCPTask_test(args.sourcedir, roi=args.roi, crop_length=args.standardized_length, k_fold=args.k_fold)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, pin_memory=True)
for k in range(args.k_fold):
os.makedirs(os.path.join(args.targetdir, 'attention', str(k)), exist_ok=True)
# define model
batch = args.batch_size
time = dataset.standardized_length
roi = dataset.num_nodes
n_labels = dataset.num_classes
spa_hidden_dim = 64
hidden_dim = 128
model = ESTANetwork(roi, hidden_dim, spa_hidden_dim, time, n_labels)
# load model
path = os.path.join(args.targetdir, 'model_weights', str(k))
full_path = sorted(glob.glob(path + '/*'), key=os.path.getmtime)[-1]
print(full_path)
checkpoint = torch.load(full_path)
model.load_state_dict(checkpoint['model'])
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
# eval
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
fold_st_attention = {'temporal-result': [], 'spatial-result': []}
for i, x in enumerate(tqdm(dataloader, ncols=60, desc=f'k:{k}')):
with torch.no_grad():
inputs = x['timeseries']
label = x['label']
test_loss, test_logit, test_attention = step(
model=model,
criterion=criterion,
inputs=inputs,
label=label,
device=device,
optimizer=None,
)
pred = test_logit.argmax(1).cpu().numpy()
predict_all = np.append(predict_all, pred)
labels_all = np.append(labels_all, label)
fold_st_attention['temporal-result'].append(np.stack(test_attention['temporal-result'], axis=0))
fold_st_attention['spatial-result'].append(np.stack(test_attention['spatial-result'], axis=0))
test_acc = metrics.accuracy_score(labels_all, predict_all)
f1_score = metrics.f1_score(labels_all, predict_all, average='macro')
f = open(os.path.join(args.targetdir, 'model', str(k), 'test_acc.log'), 'a')
writelog(f, 'test_acc: %.4f' % (test_acc))
f.close()
print('test_acc is : {}'.format(test_acc))
print('f1_score is : {}'.format(f1_score))
f = open(os.path.join(args.targetdir, 'model', str(k), 'f1_score.log'), 'a')
writelog(f, 'f1_score: %.4f' % (f1_score))
f.close()
print('---------------------------')
for key, value in fold_st_attention.items():
os.makedirs(os.path.join(args.targetdir, 'attention', str(k), key), exist_ok=True)
for idx, task in enumerate(dataset.task_list):
np.save(os.path.join(args.targetdir, 'attention', str(k), key, f'{task}.npy'), np.concatenate([v for (v, l) in zip(value, labels_all) if l == idx]))
if __name__=='__main__':
# parse options and make directories
def get_arguments():
parser = argparse.ArgumentParser(description='EAM-NETWORK')
parser.add_argument("--gpu_id", type=str, default="0", help="GPU id")
parser.add_argument('-n', '--exp_name', type=str, default='experiment_1')
parser.add_argument('-k', '--k_fold', type=int, default=5)
parser.add_argument('-ds', '--sourcedir', type=str, default='../data')
parser.add_argument('-dt', '--targetdir', type=str, default='../result')
# model args
parser.add_argument("--model_name", default="ESTA", help="model_name")
parser.add_argument('--roi', type=str, default='aal', choices=['scahefer', 'aal', 'destrieux', 'harvard_oxford'])
parser.add_argument('--standardized_length', type=int, default=176)
# training args
parser.add_argument("--batch_size", default=8, type=int, help="batch size")
parser.add_argument("--epochs_ae", type=int, default=50, help="Epochs number of training", )
parser.add_argument("--lr_ae", type=float, default=1e-5, help="Learning rate of training", )
parser.add_argument('--max_lr', type=float, default=3e-5)
parser.add_argument("--weight_decay", type=float, default=5e-6)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument("--weights", default=True, help='pre-trained ESTA weights')
return parser
parser = get_arguments()
args = parser.parse_args()
args.targetdir = os.path.join(args.targetdir, args.exp_name)
print(args.exp_name)
training_function(args)
if args.weights is not None:
tt_function(args) #test function