forked from usxxng/frequency-mixup-manipulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_intra_DA.py
182 lines (140 loc) · 5.64 KB
/
train_intra_DA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision.transforms as transforms
import torch.optim as optim
import numpy as np
import os
from time import time
from tqdm import tqdm
import dataset
from dataset import minmax_scaler
from fourier import fft_amp_mix
from utils import GradientReversal,loop_iterable
from transform import intensity_transform
import fft_model
import resnet
import GPUtil
import torch.cuda
import random
from sklearn.metrics import roc_auc_score
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
random_seed = 42
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
random.seed(random_seed)
np.random.seed(random_seed)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default="5")
# gpu id number
parser.add_argument('--model_name', type=str, default='source_disentangle')
# model save name
parser.add_argument('--batch_size', type=int, default=4)
# batch size
parser.add_argument('--init_lr', type=float, default=1e-4)
# learning rate
parser.add_argument('--epochs', type=int, default=50)
# number of epochs
args, _ = parser.parse_known_args()
return args
args = parse_args()
GPU = -1
if GPU == -1:
devices = "%d" % GPUtil.getFirstAvailable(order="memory")[0]
else:
devices = "%d" % GPU
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
print(torch.cuda.is_available())
data_path = "/task/adni1_data_adcn.npy"
label_path ="/task/adni1_label_adcn.npy"
dataset = dataset.FFTDataset(data_path=data_path, label_path=label_path, transform=intensity_transform())
shuffled_indices = np.random.permutation(len(dataset))
train_idx = shuffled_indices[:int(0.8*len(dataset))]
val_idx = shuffled_indices[int(0.8*len(dataset)):]
train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, drop_last=True,
sampler=SubsetRandomSampler(train_idx))
val_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, drop_last=False,
sampler=SubsetRandomSampler(val_idx))
print('data loading done...\n')
net = fft_model.Net(dropout=0.5)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
feature_extractor = net.feature_extractor
clf = net.classifier
intensity_classifier = nn.Sequential(
GradientReversal(lambda_= 0.1),
nn.Linear(128*2*3*2, 64),
nn.ReLU(),
nn.Linear(64, 1)
).to(device)
optimizer = torch.optim.Adam(list(intensity_classifier.parameters()) + list(net.parameters()), lr=args.init_lr)
loss_function = nn.CrossEntropyLoss()
def do_epoch(model, dataloader, criterion, optim = None):
total_loss = 0
total_acc = 0
total_size = 0
for x_ori, y_true, xi in tqdm(dataloader, leave=False):
xi = fft_amp_mix(x_ori, xi)
x_ori = minmax_scaler(x_ori)
xi = minmax_scaler(xi)
x = torch.cat([x_ori, xi])
x, y_true = x.to(device), y_true.to(device)
# label_pred = model(x)
# loss = criterion(label_pred, y_true)
intensity_y = torch.cat([torch.ones(x_ori.shape[0]), torch.zeros(xi.shape[0])])
intensity_y = intensity_y.to(device)
features = feature_extractor(x).view(x.shape[0], -1)
intensity_preds = intensity_classifier(features).squeeze()
label_pred = clf(features[:x_ori.shape[0]])
intensity_loss = F.binary_cross_entropy_with_logits(intensity_preds, intensity_y)
label_loss = F.cross_entropy(label_pred, y_true)
_, preds = torch.max(label_pred.data, 1)
total_size += y_true.size(0)
loss = label_loss + intensity_loss
if optim is not None:
optim.zero_grad()
loss.backward()
optim.step()
total_loss += loss.item()
total_acc += (preds == y_true).sum().item()
mean_loss = total_loss / len(dataloader)
mean_acc = total_acc / total_size
return mean_loss, mean_acc
best_loss = 100000
best_acc = 0
for epoch in range(0, args.epochs):
net.train()
train_loss, train_acc = do_epoch(net, train_loader, loss_function, optim=optimizer)
net.eval()
with torch.no_grad():
val_loss, val_acc = do_epoch(net, val_loader, loss_function, optim=None)
tqdm.write(f'Epoch {epoch:03d}: train_loss = {train_loss:.4f} , train_acc = {train_acc:.4f}')
tqdm.write(f'val_loss = {val_loss: .4f} , val_acc = {val_acc:.4f}')
if val_acc > best_acc:
tqdm.write(f'Saving model... Selection: val_acc')
best_acc = val_acc
torch.save(net.state_dict(), "models/{}_acc.pt".format(args.model_name))
if val_loss < best_loss:
tqdm.write(f'Saving model... Selection: val_loss')
best_loss = val_loss
torch.save(net.state_dict(), "models/{}_loss.pt".format(args.model_name))
correct = 0
total = 0
net.load_state_dict(torch.load("models/{}_loss.pt".format(args.model_name)))
net.eval()
with torch.no_grad():
for images, labels, _ in tqdm(val_loader):
images = minmax_scaler(images)
images = images.to(device).float()
labels = labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on the val loss: %d %%' % (100 * correct / total))