-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.cu
179 lines (147 loc) · 7.34 KB
/
kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <stdio.h>
#include <stdlib.h>
#include <curand.h>
#include <curand_kernel.h>
#include <iostream>
// Constants
#define M_PI 3.14159265f
#define TRADING_DAYS 252.0
// Calibration
#define BUCKET_SIZE 0.25f // TODO: implement dynamic bucket size based on strike width or other factors
#define BUCKET_LOW 5.0f // TODO: sizing based on standard deviation (derived from monte carlo simulation?) and/or personal conviction
#define BUCKET_HIGH 200.0f
#define SIMULATIONS_COUNT 10000 // TODO: it breaks 100k, why?
// Code Stuff
#define BUCKET_ARRAY_LENGTH (int) ((BUCKET_HIGH - BUCKET_LOW)/BUCKET_SIZE) // TODO: use a collection sizeable at run time
// TODO: store macro formulas with constant value in tmp vars
#define RANDSTATETYPE curandState* // TODO: might not be useful anymore
#define SIMS_SIZE(x) (SIMULATIONS_COUNT * sizeof(x)) // TODO: store macro formulas with constant value in tmp vars
#define BUCKETS_SIZE(x) (BUCKET_ARRAY_LENGTH * sizeof(x)) // TODO: store macro formulas with constant value in tmp vars
#define THREADS_PER_BLOCK 1024
#define NUM_BLOCKS (SIMULATIONS_COUNT + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK // TODO: store macro formulas with constant value in tmp vars
// Option Stats
#define DTE 45.0 // TODO: support calendars and diagonals
#define STRIKE_PRICE 105.0 // TODO: support multiple option legs
#define PREMIUM 5.55
#define IS_PUT true
#define IS_BUY false
// Underlying Stats
#define UNDERLYING_PRICE 105.0
#define SIGMA 0.46
// Market/Economy Stats
#define RISK_FREE_RATE 0.05
// Formulas
#define YTE DTE/TRADING_DAYS
// Run GPU Code With Error Check
#define gpuErrorCheck(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char* file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__global__ void initRandomGenerator(RANDSTATETYPE state, unsigned long long seed)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
curand_init(seed, tid, 0, &state[tid]);
}
__global__ void monteCarloSimulation(float* prices, float S, float T, float r, float sigma, RANDSTATETYPE state, int qty_simulations = SIMULATIONS_COUNT) // TODO: double or float
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
double price = S; // TODO: better variable naming
double dt = T / TRADING_DAYS; // TODO: this doesn't look right
// Each thread performs its own simulation and places result into prices array
for (int i = tid; i < qty_simulations; i += blockDim.x * gridDim.x) { // TODO: what is required to run >10000 simulations? More VRAM?
// Generate a random price path for the underlying asset
price = S;
for (double t = 0; t < T; t += dt) {
double2 randomNums;
randomNums.x = curand_uniform(&state[tid]); // TODO: switch to curand_uniform_double2 (didn't work before)
randomNums.y = curand_uniform(&state[tid]);
double z;
if (randomNums.x > 0) {
z = sqrt(-2.0 * log(randomNums.x)) * cos(2.0 * M_PI * randomNums.y); // TODO: Validate this formula
}
else z = 0;
double drift = (r - 0.5 * sigma * sigma) * dt;
double diffusion = sigma * sqrt(dt) * z;
price *= exp(drift + diffusion);
}
// Store the final price in the array
prices[i] = static_cast<float>(price); // Convert back to float
}
}
double option_pl_at_expiry(double underlying_price, double strike_price, double premium, bool is_put, bool is_buy) {
if (is_buy) { // TODO: fix formatting to look better
if (is_put) return fmax(strike_price - underlying_price, 0.0) - premium; // TODO: don't trust this until I sit down and give a real answer
return fmax(underlying_price - strike_price, 0.0) - premium; // TODO: don't trust this until I sit down and give a real answer
}
if (is_put) {
if (underlying_price >= strike_price) return premium;
return premium - (strike_price - underlying_price);
}
return fmin(premium, strike_price - underlying_price); // TODO: don't trust this until I sit down and give a real answer
}
void option_pl_array_populate(double strike_price, double premium, bool is_put, bool is_buy, double *pl_array, int len = BUCKET_ARRAY_LENGTH) {
double tmp_price = BUCKET_LOW;
for (int i = 0; i < len; i++) {
pl_array[i] = option_pl_at_expiry(tmp_price, strike_price, premium, is_put, is_buy);
tmp_price += BUCKET_SIZE;
}
}
int main()
{
// Allocate memory on the host for price results
float* prices = (float*)malloc(SIMS_SIZE(float));
double* optionPL = (double*)malloc(BUCKETS_SIZE(double));
// Allocate memory on the device for price results
float* devPrices;
gpuErrorCheck(cudaMalloc((void**)&devPrices, SIMS_SIZE(float)));
// Allocate memory on the device for random number generation states
RANDSTATETYPE devStates;
gpuErrorCheck(cudaMalloc((void**)&devStates, SIMS_SIZE(RANDSTATETYPE)));
// Choose which GPU to run on, change this on a multi-GPU system.
gpuErrorCheck(cudaSetDevice(0));
// Launch the kernel
int numBlocks = (SIMULATIONS_COUNT + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
initRandomGenerator << <numBlocks, THREADS_PER_BLOCK >> > (devStates, time(NULL));
monteCarloSimulation << <numBlocks, THREADS_PER_BLOCK >> > (devPrices, SIMULATIONS_COUNT, UNDERLYING_PRICE, yearsUntilExpiration, RISK_FREE_RATE, SIGMA, devStates);
// Copy the results back to the host
gpuErrorCheck(cudaMemcpy(prices, devPrices, SIMS_SIZE(float), cudaMemcpyDeviceToHost));
//print generated prices
/*for (int i = 0; i < SIMULATIONS_COUNT; i++) {
printf("sim %i price: $%.2f", i, prices[i]);
}*/
float probabilities[BUCKET_ARRAY_SIZE];
float current_price = BUCKET_LOW;
float current_bucket_top;
for (int i = 0; i < BUCKET_ARRAY_SIZE; i++) {
current_bucket_top = current_price + BUCKET_SIZE;
probabilities[i] = 0.0f;
for (int j = 0; j < SIMULATIONS_COUNT; j++) {
if (prices[j] >= current_price && prices[j] < current_bucket_top) {
probabilities[i] += 1.0f;
}
}
probabilities[i] /= SIMULATIONS_COUNT;
current_price += BUCKET_SIZE;
}
current_price = BUCKET_LOW;
option_pl_array_populate(STRIKEPRICE, PREMIUM, IS_PUT, IS_BUY, optionPL, BUCKET_ARRAY_SIZE);
double total = 0.0;
for (int i = 0; i < BUCKET_ARRAY_SIZE; i++) {
printf("$%.2f to $%.2f expected return: $%.2f, probability: %.2f%%, factor: $%.2f\n", current_price, current_price + BUCKET_SIZE, optionPL[i], probabilities[i] * 100.0f, optionPL[i] * probabilities[i]);
current_price += BUCKET_SIZE;
total += optionPL[i] * probabilities[i];
}
std::cout << "total expected return: " << total << std::endl;
// Free memory
free(prices);
free(optionPL);
gpuErrorCheck(cudaFree(devPrices));
gpuErrorCheck(cudaFree(devStates));
std::cout << "Done." << std::endl;
return 0;
}