-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
62 lines (50 loc) · 2.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import print_function
import numpy as np
import helpers.command_parser as cp
import helpers.command_parser as parse
import helpers.early_stopping as EsParse
from helpers.data_handling import DataHandler
def training_command_parser(parser):
parser.add_argument('--tshuffle', help='Shuffle sequences during training.', action='store_true')
parser.add_argument('--extended_set', help='Use extended training set (contains first half of validation and test set).', action='store_true')
parser.add_argument('-d', dest='dataset', help='Directory name of the dataset.', default='', type=str)
parser.add_argument('--dir', help='Directory name to save model.', default='', type=str)
parser.add_argument('--save', choices=['All', 'Best', 'None'], help='Policy for saving models.', default='Best')
parser.add_argument('--metrics', help='Metrics for validation, comma separated', default='sps', type=str)
parser.add_argument('--load_last_model', help='Load Last model before starting training.', action='store_true')
parser.add_argument('--progress', help='Progress intervals', default='5000', type=str)
parser.add_argument('--mpi', help='Max progress intervals', default=np.inf, type=float)
parser.add_argument('--max_iter', help='Max number of iterations', default=np.inf, type=float)
parser.add_argument('--max_time', help='Max training time in seconds', default=np.inf, type=float)
parser.add_argument('--min_iter', help='Min number of iterations before showing progress', default=50000, type=float) # 10 epoch for ml1m
def num(s):
try:
return int(s)
except ValueError:
return float(s)
def main():
args = cp.command_parser(training_command_parser, cp.predictor_command_parser, EsParse.early_stopping_command_parser)
predictor = parse.get_predictor(args)
dataset = DataHandler(dirname=args.dataset, extended_training_set=args.extended_set, shuffle_training=args.tshuffle)
if args.dataset == "ml1m":
args.min_iter = 50000
args.progress = 5000
elif args.dataset == 'netflix':
args.min_iter = 600000
args.progress = 40000
elif args.dataset == 'rsc':
args.min_iter = 800000
args.progress = 200000
predictor.prepare_networks(dataset.n_items)
predictor.train(dataset,
save_dir=dataset.dirname + "models/" + args.dir,
progress=num(args.progress),
autosave=args.save,
max_iter=args.max_iter,
min_iterations=args.min_iter,
max_time=args.max_time,
early_stopping=EsParse.get_early_stopper(args),
load_last_model=args.load_last_model,
validation_metrics=args.metrics.split(','))
if __name__ == '__main__':
main()