Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

when enabled --l_emb , then testing the model it will raise an excption. #8

Open
shwangdev opened this issue Apr 9, 2019 · 0 comments

Comments

@shwangdev
Copy link

shwangdev commented Apr 9, 2019

(py3) λ python test.py -fr ktf -d data\movielns10k\ -b 512 --max_length 30 --r_l 30 --r_emb 30
Using TensorFlow backend.
2019-04-09 22:31:54.683881: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2019-04-09 22:31:54.924866: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.6325
pciBusID: 0000:01:00.0
totalMemory: 11.00GiB freeMemory: 9.10GiB
2019-04-09 22:31:54.943914: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0
2019-04-09 22:31:55.258021: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-04-09 22:31:55.271662: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0
2019-04-09 22:31:55.280244: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N
2019-04-09 22:31:55.287898: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3379 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)


Layer (type) Output Shape Param #

embedding_1 (Embedding) (None, 30, 30) 89280


masking_1 (Masking) (None, 30, 30) 0


lstm_1 (LSTM) (None, 30) 7320


dense_1 (Dense) (None, 2976) 92256


activation_1 (Activation) (None, 2976) 0

Total params: 188,856
Trainable params: 188,856
Non-trainable params: 0


filename : data\movielns10k\models\ktf\rnn_cce_ml30_bs512_ne*_gc100_e30_h30_Ug_lr0.1_nt1.ktf
['data\movielns10k\models\ktf\rnn_cce_ml30_bs512_ne49.969_gc100_e30_h30_Ug_lr0.1_nt1.ktf'
'data\movielns10k\models\ktf\rnn_cce_ml30_bs512_ne149.969_gc100_e30_h30_Ug_lr0.1_nt1.ktf']
Opening file (1)
Traceback (most recent call last):
File "test.py", line 168, in
main()
File "test.py", line 161, in main
evaluator = run_tests(predictor, f, dataset, args, get_full_recommendation_list=args.save_rank, k=args.nb_of_predictions)
File "test.py", line 55, in run_tests
recommendations = predictor.top_k_recommendations(viewed, k=k)
File "D:\Users\shwang\workspace\tests\LSTM-recommendation-model\neural_networks\rnn_base.py", line 105, in top_k_recommendations
output = self.model.predict_on_batch(X)
File "d:\Users\shwang\Anaconda3\envs\py3\lib\site-packages\keras\models.py", line 1041, in predict_on_batch
return self.model.predict_on_batch(x)
File "d:\Users\shwang\Anaconda3\envs\py3\lib\site-packages\keras\engine\training.py", line 1906, in predict_on_batch
self._feed_input_shapes)
File "d:\Users\shwang\Anaconda3\envs\py3\lib\site-packages\keras\engine\training.py", line 110, in _standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking : expected embedding_1_input to have 2 dimensions, but got array with shape (1, 30, 2976)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant