-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathand.py
51 lines (38 loc) · 1.6 KB
/
and.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
import random
inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
answers = [0.0, 0.0, 0.0, 1.0]
class AndGate(object):
def __init__(self, learning_rate, num_steps):
self.lr = learning_rate
self.num_steps = num_steps
# random initialize
self.b = random.uniform(-1, 1)
self.w1 = random.uniform(-1, 1)
self.w2 = random.uniform(-1, 1)
def train(self, input_data, answer_data):
for step in range(self.num_steps):
error = 0.0
for inputs, answer in zip(input_data, answer_data):
output = self.compute_output(inputs)
error += 0.5 * (answer - output) ** 2
self.weight_update(answer, output, inputs)
mean_squared_error = error / 4.0
if step % 10 == 0:
self.predict(input_data)
print("mean_squared_error:", mean_squared_error)
print("=============")
def compute_output(self, input_data):
output = input_data[0] * self.w1 + input_data[1] * self.w2 + self.b
return output
def weight_update(self, answer, output, input_data):
self.w1 = self.w1 + self.lr * (answer - output) * input_data[0]
self.w2 = self.w2 + self.lr * (answer - output) * input_data[1]
self.b = self.b + self.lr * (answer - output)
def predict(self, input_data):
for inputs in input_data:
print(inputs[0], inputs[1], self.compute_output(inputs))
model = AndGate(learning_rate=0.01, num_steps=2000)
model.train(inputs, answers)
print("final result:")
model.predict(inputs)