-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmodel.py
88 lines (69 loc) · 2.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
def init_weights(m, init_fn=torch.nn.init.xavier_normal_):
if type(m) == torch.nn.Linear:
init_fn(m.weight)
def fc_block(in_f, out_f):
return torch.nn.Sequential(
torch.nn.Linear(in_f, out_f),
torch.nn.ReLU(out_f)
)
class OccupancyMap(torch.nn.Module):
def __init__(
self,
emb_size1,
emb_size2,
hidden_size=256,
do_color=True,
hidden_layers_block=1
):
super(OccupancyMap, self).__init__()
self.do_color = do_color
self.embedding_size1 = emb_size1
self.in_layer = fc_block(self.embedding_size1, hidden_size)
hidden1 = [fc_block(hidden_size, hidden_size)
for _ in range(hidden_layers_block)]
self.mid1 = torch.nn.Sequential(*hidden1)
# self.embedding_size2 = 21*(5+1)+3 - self.embedding_size # 129-66=63 32
self.embedding_size2 = emb_size2
self.cat_layer = fc_block(
hidden_size + self.embedding_size1, hidden_size)
# self.cat_layer = fc_block(
# hidden_size , hidden_size)
hidden2 = [fc_block(hidden_size, hidden_size)
for _ in range(hidden_layers_block)]
self.mid2 = torch.nn.Sequential(*hidden2)
self.out_alpha = torch.nn.Linear(hidden_size, 1)
if self.do_color:
self.color_linear = fc_block(self.embedding_size2 + hidden_size, hidden_size)
self.out_color = torch.nn.Linear(hidden_size, 3)
# self.relu = torch.nn.functional.relu
self.sigmoid = torch.sigmoid
def forward(self, x,
noise_std=None,
do_alpha=True,
do_color=True,
do_cat=True):
fc1 = self.in_layer(x[...,:self.embedding_size1])
fc2 = self.mid1(fc1)
# fc3 = self.cat_layer(fc2)
if do_cat:
fc2_x = torch.cat((fc2, x[...,:self.embedding_size1]), dim=-1)
fc3 = self.cat_layer(fc2_x)
else:
fc3 = fc2
fc4 = self.mid2(fc3)
alpha = None
if do_alpha:
raw = self.out_alpha(fc4) # todo ignore noise
if noise_std is not None:
noise = torch.randn(raw.shape, device=x.device) * noise_std
raw = raw + noise
# alpha = self.relu(raw) * scale # nerf
alpha = raw * 10. #self.scale # unisurf
color = None
if self.do_color and do_color:
fc4_cat = self.color_linear(torch.cat((fc4, x[..., self.embedding_size1:]), dim=-1))
raw_color = self.out_color(fc4_cat)
color = self.sigmoid(raw_color)
return alpha, color