-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathrender_rays.py
122 lines (100 loc) · 3.93 KB
/
render_rays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import numpy as np
def occupancy_activation(alpha, distances=None):
# occ = 1.0 - torch.exp(-alpha * distances)
occ = torch.sigmoid(alpha) # unisurf
return occ
def alpha_to_occupancy(depths, dirs, alpha, add_last=False):
interval_distances = depths[..., 1:] - depths[..., :-1]
if add_last:
last_distance = torch.empty(
(depths.shape[0], 1),
device=depths.device,
dtype=depths.dtype).fill_(0.1)
interval_distances = torch.cat(
[interval_distances, last_distance], dim=-1)
dirs_norm = torch.norm(dirs, dim=-1)
interval_distances = interval_distances * dirs_norm[:, None]
occ = occupancy_activation(alpha, interval_distances)
return occ
def occupancy_to_termination(occupancy, is_batch=False):
if is_batch:
first = torch.ones(list(occupancy.shape[:2]) + [1], device=occupancy.device)
free_probs = (1. - occupancy + 1e-10)[:, :, :-1]
else:
first = torch.ones([occupancy.shape[0], 1], device=occupancy.device)
free_probs = (1. - occupancy + 1e-10)[:, :-1]
free_probs = torch.cat([first, free_probs], dim=-1)
term_probs = occupancy * torch.cumprod(free_probs, dim=-1)
# using escape probability
# occupancy = occupancy[:, :-1]
# first = torch.ones([occupancy.shape[0], 1], device=occupancy.device)
# free_probs = (1. - occupancy + 1e-10)
# free_probs = torch.cat([first, free_probs], dim=-1)
# last = torch.ones([occupancy.shape[0], 1], device=occupancy.device)
# occupancy = torch.cat([occupancy, last], dim=-1)
# term_probs = occupancy * torch.cumprod(free_probs, dim=-1)
return term_probs
def render(termination, vals, dim=-1):
weighted_vals = termination * vals
render = weighted_vals.sum(dim=dim)
return render
def render_loss(render, gt, loss="L1", normalise=False):
residual = render - gt
if loss == "L2":
loss_mat = residual ** 2
elif loss == "L1":
loss_mat = torch.abs(residual)
else:
print("loss type {} not implemented!".format(loss))
if normalise:
loss_mat = loss_mat / gt
return loss_mat
def reduce_batch_loss(loss_mat, var=None, avg=True, mask=None, loss_type="L1"):
mask_num = torch.sum(mask, dim=-1)
if (mask_num == 0).any(): # no valid sample, return 0 loss
loss = torch.zeros_like(loss_mat)
if avg:
loss = torch.mean(loss, dim=-1)
return loss
if var is not None:
eps = 1e-4
if loss_type == "L2":
information = 1.0 / (var + eps)
elif loss_type == "L1":
information = 1.0 / (torch.sqrt(var) + eps)
loss_weighted = loss_mat * information
else:
loss_weighted = loss_mat
if avg:
if mask is not None:
loss = (torch.sum(loss_weighted, dim=-1)/(torch.sum(mask, dim=-1)+1e-10))
if (loss > 100000).any():
print("loss explode")
exit(-1)
else:
loss = torch.mean(loss_weighted, dim=-1).sum()
else:
loss = loss_weighted
return loss
def make_3D_grid(occ_range=[-1., 1.], dim=256, device="cuda:0", transform=None, scale=None):
t = torch.linspace(occ_range[0], occ_range[1], steps=dim, device=device)
grid = torch.meshgrid(t, t, t)
grid_3d = torch.cat(
(grid[0][..., None],
grid[1][..., None],
grid[2][..., None]), dim=3
)
if scale is not None:
grid_3d = grid_3d * scale
if transform is not None:
R1 = transform[None, None, None, 0, :3]
R2 = transform[None, None, None, 1, :3]
R3 = transform[None, None, None, 2, :3]
grid1 = (R1 * grid_3d).sum(-1, keepdim=True)
grid2 = (R2 * grid_3d).sum(-1, keepdim=True)
grid3 = (R3 * grid_3d).sum(-1, keepdim=True)
grid_3d = torch.cat([grid1, grid2, grid3], dim=-1)
trans = transform[None, None, None, :3, 3]
grid_3d = grid_3d + trans
return grid_3d