diff --git a/alphafold3/template_embedder.py b/alphafold3/template_embedder.py new file mode 100644 index 0000000..0752818 --- /dev/null +++ b/alphafold3/template_embedder.py @@ -0,0 +1,85 @@ +import torch +import torch.nn as nn +from alphafold3.pairformer import PairFormer + + +class TemplateEmbedder(nn.Module): + def __init__( + self, + dim: int = None, + depth: int = 2, + seq_len: int = None, + heads: int = 64, + dim_head: int = 64, + attn_dropout: float = 0.0, + ff_dropout: float = 0.0, + global_column_attn: bool = False, + c: int = 64, + Ntemplates: int = 1, + *args, + **kwargs + ): + super(TemplateEmbedder, self).__init__() + # Define layers used in the embedding + self.layer_norm_z = nn.LayerNorm(c) + self.layer_norm_v = nn.LayerNorm(c) + self.linear_no_bias_z = nn.Linear(c, c, bias=False) + self.linear_no_bias_a = nn.Linear(c, c, bias=False) + self.pairformer = PairFormer( + dim=dim, + seq_len=seq_len, + heads=heads, + dim_head=dim_head, + attn_dropout=attn_dropout, + ff_dropout=ff_dropout, + depth=depth, + *args, + **kwargs + ) + self.relu = nn.ReLU() + self.final_linear = nn.Linear(c, c, bias=False) + + def forward(self, f, zij, Ntemplates): + # Step 1-3: Compute various masks and concatenate + template_backbone_frame_mask = f # Placeholder operation + template_pseudo_beta_mask = f # Placeholder operation + template_distogram = f # Placeholder operation + template_unit_vector = f # Placeholder operation + + atij = torch.cat( + [ + template_distogram, + template_backbone_frame_mask, + template_unit_vector, + template_pseudo_beta_mask, + ], + dim=-1, + ) + + # Step 4-5: Apply masking based on asym_id and concatenate restypes + asym_id_mask = ( + f == f + ) # Placeholder for actual asym_id comparison logic + atij = atij * asym_id_mask + restype = f # Placeholder for restype feature + atij = torch.cat([atij, restype, restype], dim=-1) + + # Initialize uij + uij = torch.zeros_like(atij) + + # Step 7-11: Iterate over templates + for _ in range(Ntemplates): + vij = self.linear_no_bias_z( + self.layer_norm_z(zij) + ) + self.linear_no_bias_a(atij) + for layer in self.pairformer_stack: + vij = layer( + vij + ) # Assuming some residual connection or similar logic in actual Pairformer + uij += self.layer_norm_v(vij) + + # Step 12-13: Normalize and apply final transformation + uij /= Ntemplates + uij = self.final_linear(self.relu(uij)) + + return uij