-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
119 lines (101 loc) · 3.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from distutils.log import error
from logging import exception
import os
import torch
from torch import nn
from torchvision import datasets
from torchvision import transforms
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
from model import LeNet5
from model import ResNet18
def train(dataloader, model, loss_func, optimizer, epoch, device):
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
y_hat = model(X)
loss = loss_func(y_hat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch == len(dataloader) - 1:
loss, current = loss.item(), batch * len(X)
print(f'epoch:{epoch+1}\tloss: {loss:>7f}', end='\t')
def test(dataloader, model, loss_fn, device):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(
f'Test Error: Accuracy: {(100*correct):>0.1f}%, Average loss: {test_loss:>8f}\n')
if __name__ == '__main__':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(root='./data',
train=True,
download=True,
transform=transform_train)
test_set = datasets.CIFAR10(root='./data',
train=False,
download=False, transform=transform_test)
train_loader = DataLoader(train_set,
batch_size=64,
shuffle=False,
num_workers=0)
test_loader = DataLoader(test_set,
batch_size=100,
shuffle=False, num_workers=0)
test_data_iter = iter(test_loader)
test_image, test_label = test_data_iter.next()
print('dataset epochs: ', len(train_loader))
for X, y in train_loader:
print('X.shape: ', X.shape)
print('y.shape: ', y.shape)
break
model_name = 'LeNet5'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if model_name == 'LeNet5':
model = LeNet5().to(device)
elif model_name == 'ResNet18':
model = ResNet18().to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model.parameters())
start_epoch = 0
epochs = 20
try:
if os.path.exists(f'checkpoint/{model_name}.pth'):
checkpoint = torch.load(f'checkpoint/{model_name}.pth')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']+1
except BaseException as e:
print(e)
print("start_epoch: ", start_epoch)
print("end_epoch: ", epochs)
for epoch in range(start_epoch, epochs):
train(train_loader, model, loss_func, optimizer, epoch, device)
test(test_loader, model, loss_func, device)
if (epoch + 1) % 5 == 0:
state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch}
torch.save(state, f'checkpoint/{model_name}.pth')
print(f'Saved PyTorch {model_name} State to checkpoint/{model_name}.pth')