-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
63 lines (48 loc) · 1.93 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from uuid import uuid4
from flask import Flask, request, render_template, send_from_directory
app = Flask(__name__)
# app = Flask(__name__, static_folder="images")
APP_ROOT = os.path.dirname(os.path.abspath(__file__))
@app.route("/upload", methods=["POST"])
def upload():
target = os.path.join(APP_ROOT, 'images/')
# target = os.path.join(APP_ROOT, 'static/')
print(target)
if not os.path.isdir(target):
os.mkdir(target)
else:
print("Couldn't create upload directory: {}".format(target))
print(request.files.getlist("file"))
for upload in request.files.getlist("file"):
print(upload)
print("{} is the file name".format(upload.filename))
filename = upload.filename
destination = "/".join([target, filename])
print ("Accept incoming file:", filename)
print ("Save it to:", destination)
upload.save(destination)
#import tensorflow as tf
import numpy as np
from keras.preprocessing import image
from keras.models import load_model
new_model = load_model('./model/model1.h5')
new_model.summary()
test_image = image.load_img('images//'+filename,target_size=(64,64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = new_model.predict(test_image)
if result[0][0] == 0:
prediction = 'Patient is affected with Corona'
else:
prediction = 'Patient is Healthy'
# return send_from_directory("images", filename, as_attachment=True)
return render_template("template.html",image_name=filename, text=prediction)
@app.route("/")
def index():
return render_template("index.html")
@app.route('/upload/<filename>')
def send_image(filename):
return send_from_directory("images", filename)
if __name__ == "__main__":
app.run(host ='0.0.0.0', port = 5001, debug = True)