-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
executable file
·32 lines (29 loc) · 1.03 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python3.7
from sklearn.cluster import KMeans
import json
import numpy as np
import os
import sys
def main():
clusters = 20
dirname = sys.argv[1]
filenames = []
X = []
for idx, filename in enumerate(os.listdir(dirname)):
filenames.append(filename)
with open('%s/%s' % (dirname, filename), 'r') as f:
X.append(np.array(json.load(f)).astype(np.float))
sys.stderr.write('\rLoaded %d training vectors...' % idx)
X = np.array(X)
print('Fitting %d documents into %d clusters...' % (len(filenames), clusters), file=sys.stderr)
model = KMeans(n_clusters=clusters, random_state=0)
result = model.fit_predict(X)
print('Summary', file=sys.stderr)
print('=======', file=sys.stderr)
for idx in range(clusters):
print('%d: %d' % (idx, len([entry for entry in result if entry == idx])), file=sys.stderr)
print('file,cluster')
for idx, filename in enumerate(filenames):
print('%s,%d' % (filename, result[idx]))
if __name__ == '__main__':
main()