-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel_util.py
121 lines (89 loc) · 4.44 KB
/
model_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
# coding: utf-8
import tensorflow as tf
import time
import PIL.Image as Image
from matplotlib import pyplot as plt
from IPython import display
from config import *
from model import *
#generator = Generator()
#tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)
#discriminator = Discriminator()
#tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)
#generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
#discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
#checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
# discriminator_optimizer=discriminator_optimizer,
# generator=generator,
# discriminator=discriminator)
#import datetime
#log_dir="logs/"
#summary_writer = tf.summary.create_file_writer(
# log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
def generate_images(model, test_input, tar, count):
prediction = model(test_input, training=True)
plt.figure(figsize=(25, 25))
#plt.figure(figsize=(6.5, 6.5))
#plt.imshow(tar[0] * 0.5 + 0.5)
#plt.axis('off')
#plt.savefig('./predict/' + str(count) + '.png', bbox_inches='tight',pad_inches=-0.1)
display_list = [test_input[0], tar[0], prediction[0]]
#title = ['Input Image', 'Ground Truth', 'Predicted Image']
for i in range(3):
plt.subplot(1, 3, i+1)
#plt.title(title[i])
# getting the pixel values between [0, 1] to plot it.
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis('off')
plt.savefig('./predict/' + str(count) + '.png')
def predict_images(model, test_input):
prediction = model(test_input, training=True)
display_list = [test_input[0], prediction[0]]
to_image = Image.new('RGB', (IMG_WIDTH * 2, IMG_WIDTH))
for i in range(2):
# getting the pixel values between [0, 1] to plot it.
img_temp = tf.keras.preprocessing.image.array_to_img(display_list[i] * 0.5 + 0.5)
to_image.paste(img_temp, (i * IMG_WIDTH, 0))
return to_image
@tf.function
def train_step(input_image, target, epoch, generator, discriminator, generator_optimizer, discriminator_optimizer, summary_writer):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = generator(input_image, training=True)
disc_real_output = discriminator([input_image, target], training=True)
disc_generated_output = discriminator([input_image, gen_output], training=True)
gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
disc_loss = discriminator_loss(disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(gen_total_loss,
generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(disc_loss,
discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(generator_gradients,
generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
discriminator.trainable_variables))
with summary_writer.as_default():
tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
tf.summary.scalar('disc_loss', disc_loss, step=epoch)
def fit(train_ds, epochs, test_ds, generator, discriminator, generator_optimizer, discriminator_optimizer, checkpoint, summary_writer):
for epoch in range(epochs):
start = time.time()
display.clear_output(wait=True)
#for example_input, example_target in test_ds.take(1):
# generate_images(generator, example_input, example_target)
print("Epoch: ", epoch)
# Train
for n, (input_image, target) in train_ds.enumerate():
print('.', end='')
if (n+1) % 100 == 0:
print()
train_step(input_image, target, epoch, generator, discriminator, generator_optimizer, discriminator_optimizer, summary_writer)
print()
# saving (checkpoint) the model every 20 epochs
if (epoch + 1) % 20 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1,
time.time()-start))
checkpoint.save(file_prefix = checkpoint_prefix)