forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor.py
503 lines (418 loc) · 19.2 KB
/
tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import sys
import torch
import torch._C as _C
from torch.namedtensor import _update_names, _check_serializing_named_tensor
from collections import OrderedDict
import torch.utils.hooks as hooks
import warnings
import weakref
from torch._six import imap
from torch._C import _add_docstr
from numbers import Number
# NB: If you subclass Tensor, and want to share the subclassed class
# across processes, you must also update torch/multiprocessing/reductions.py
# to define a ForkingPickler serialization mode for the class.
#
# NB: If you add a new method to Tensor, you must update
# torch/__init__.py.in to add a type annotation for your method;
# otherwise, it will not show up in autocomplete.
class Tensor(torch._C._TensorBase):
def __deepcopy__(self, memo):
if not self.is_leaf:
raise RuntimeError("Only Tensors created explicitly by the user "
"(graph leaves) support the deepcopy protocol at the moment")
if id(self) in memo:
return memo[id(self)]
with torch.no_grad():
if self.is_sparse:
new_tensor = self.clone()
else:
new_storage = self.storage().__deepcopy__(memo)
new_tensor = self.new()
new_tensor.set_(new_storage, self.storage_offset(), self.size(), self.stride())
memo[id(self)] = new_tensor
new_tensor.requires_grad = self.requires_grad
return new_tensor
def __reduce_ex__(self, proto):
_check_serializing_named_tensor(self)
# See Note [Don't serialize hooks]
torch.utils.hooks.warn_if_has_hooks(self)
if self.is_quantized:
args = (self.storage(),
self.storage_offset(),
tuple(self.size()),
self.stride(),
self.q_scale(),
self.q_zero_point(),
self.requires_grad,
OrderedDict()) # TODO: self.qscheme()
return (torch._utils._rebuild_qtensor, args)
else:
args = (self.storage(),
self.storage_offset(),
tuple(self.size()),
self.stride(),
self.requires_grad,
OrderedDict()) # previously was self._backward_hooks
return (torch._utils._rebuild_tensor_v2, args)
def __setstate__(self, state):
# Warning: this method is NOT called when you torch.load() a tensor;
# that is managed by _rebuild_tensor_v2
if not self.is_leaf:
raise RuntimeError('__setstate__ can be only called on leaf Tensors')
if len(state) == 4:
# legacy serialization of Tensor
self.set_(*state)
return
elif len(state) == 5:
# legacy serialization of Variable
self.data = state[0]
state = (state[3], state[4], state[2])
# The setting of _backward_hooks is expected to be a no-op.
# See Note [Don't serialize hooks]
self.requires_grad, _, self._backward_hooks = state
def __repr__(self):
# All strings are unicode in Python 3, while we have to encode unicode
# strings in Python2. If we can't, let python decide the best
# characters to replace unicode characters with.
if sys.version_info > (3,):
return torch._tensor_str._str(self)
else:
if hasattr(sys.stdout, 'encoding'):
return torch._tensor_str._str(self).encode(
sys.stdout.encoding or 'UTF-8', 'replace')
else:
return torch._tensor_str._str(self).encode('UTF-8', 'replace')
def backward(self, gradient=None, retain_graph=None, create_graph=False):
r"""Computes the gradient of current tensor w.r.t. graph leaves.
The graph is differentiated using the chain rule. If the tensor is
non-scalar (i.e. its data has more than one element) and requires
gradient, the function additionally requires specifying ``gradient``.
It should be a tensor of matching type and location, that contains
the gradient of the differentiated function w.r.t. ``self``.
This function accumulates gradients in the leaves - you might need to
zero them before calling it.
Arguments:
gradient (Tensor or None): Gradient w.r.t. the
tensor. If it is a tensor, it will be automatically converted
to a Tensor that does not require grad unless ``create_graph`` is True.
None values can be specified for scalar Tensors or ones that
don't require grad. If a None value would be acceptable then
this argument is optional.
retain_graph (bool, optional): If ``False``, the graph used to compute
the grads will be freed. Note that in nearly all cases setting
this option to True is not needed and often can be worked around
in a much more efficient way. Defaults to the value of
``create_graph``.
create_graph (bool, optional): If ``True``, graph of the derivative will
be constructed, allowing to compute higher order derivative
products. Defaults to ``False``.
"""
torch.autograd.backward(self, gradient, retain_graph, create_graph)
def register_hook(self, hook):
r"""Registers a backward hook.
The hook will be called every time a gradient with respect to the
Tensor is computed. The hook should have the following signature::
hook(grad) -> Tensor or None
The hook should not modify its argument, but it can optionally return
a new gradient which will be used in place of :attr:`grad`.
This function returns a handle with a method ``handle.remove()``
that removes the hook from the module.
Example::
>>> v = torch.tensor([0., 0., 0.], requires_grad=True)
>>> h = v.register_hook(lambda grad: grad * 2) # double the gradient
>>> v.backward(torch.tensor([1., 2., 3.]))
>>> v.grad
2
4
6
[torch.FloatTensor of size (3,)]
>>> h.remove() # removes the hook
"""
if not self.requires_grad:
raise RuntimeError("cannot register a hook on a tensor that "
"doesn't require gradient")
if self._backward_hooks is None:
self._backward_hooks = OrderedDict()
if self.grad_fn is not None:
self.grad_fn._register_hook_dict(self)
handle = hooks.RemovableHandle(self._backward_hooks)
self._backward_hooks[handle.id] = hook
return handle
def reinforce(self, reward):
def trim(str):
return '\n'.join([line.strip() for line in str.split('\n')])
raise RuntimeError(trim(r"""reinforce() was removed.
Use torch.distributions instead.
See https://pytorch.org/docs/master/distributions.html
Instead of:
probs = policy_network(state)
action = probs.multinomial()
next_state, reward = env.step(action)
action.reinforce(reward)
action.backward()
Use:
probs = policy_network(state)
# NOTE: categorical is equivalent to what used to be called multinomial
m = torch.distributions.Categorical(probs)
action = m.sample()
next_state, reward = env.step(action)
loss = -m.log_prob(action) * reward
loss.backward()
"""))
detach = _add_docstr(_C._TensorBase.detach, r"""
Returns a new Tensor, detached from the current graph.
The result will never require gradient.
.. note::
Returned Tensor shares the same storage with the original one.
In-place modifications on either of them will be seen, and may trigger
errors in correctness checks.
IMPORTANT NOTE: Previously, in-place size / stride / storage changes
(such as `resize_` / `resize_as_` / `set_` / `transpose_`) to the returned tensor
also update the original tensor. Now, these in-place changes will not update the
original tensor anymore, and will instead trigger an error.
For sparse tensors:
In-place indices / values changes (such as `zero_` / `copy_` / `add_`) to the
returned tensor will not update the original tensor anymore, and will instead
trigger an error.
""")
detach_ = _add_docstr(_C._TensorBase.detach_, r"""
Detaches the Tensor from the graph that created it, making it a leaf.
Views cannot be detached in-place.
""")
def retain_grad(self):
r"""Enables .grad attribute for non-leaf Tensors."""
if self.grad_fn is None: # no-op for leaves
return
if not self.requires_grad:
raise RuntimeError("can't retain_grad on Tensor that has requires_grad=False")
if hasattr(self, 'retains_grad'):
return
weak_self = weakref.ref(self)
def retain_grad_hook(grad):
var = weak_self()
if var is None:
return
if var._grad is None:
var._grad = grad.clone()
else:
var._grad = var._grad + grad
self.register_hook(retain_grad_hook)
self.retains_grad = True
def is_shared(self):
r"""Checks if tensor is in shared memory.
This is always ``True`` for CUDA tensors.
"""
return self.storage().is_shared()
def share_memory_(self):
r"""Moves the underlying storage to shared memory.
This is a no-op if the underlying storage is already in shared memory
and for CUDA tensors. Tensors in shared memory cannot be resized.
"""
self.storage().share_memory_()
return self
def __reversed__(self):
r"""Reverses the tensor along dimension 0."""
if self.dim() == 0:
return self
else:
return self.flip(0)
def norm(self, p="fro", dim=None, keepdim=False, dtype=None):
r"""See :func:`torch.norm`"""
return torch.norm(self, p, dim, keepdim, dtype=dtype)
def lu(self, pivot=True, get_infos=False):
r"""See :func:`torch.lu`"""
# If get_infos is True, then we don't need to check for errors and vice versa
LU, pivots, infos = torch._lu_with_info(self, pivot=pivot, check_errors=(not get_infos))
if get_infos:
return LU, pivots, infos
else:
return LU, pivots
def gels(self, A):
r"""See :func:`torch.lstsq`"""
warnings.warn("torch.gels is deprecated in favour of torch.lstsq and will be "
"removed in the next release. Please use torch.lstsq instead.", stacklevel=2)
return super(Tensor, self).lstsq(A)
def stft(self, n_fft, hop_length=None, win_length=None, window=None,
center=True, pad_mode='reflect', normalized=False, onesided=True):
r"""See :func:`torch.stft`
.. warning::
This function changed signature at version 0.4.1. Calling with
the previous signature may cause error or return incorrect result.
"""
return torch.stft(self, n_fft, hop_length, win_length, window, center,
pad_mode, normalized, onesided)
def resize(self, *sizes):
warnings.warn("non-inplace resize is deprecated")
from torch.autograd._functions import Resize
return Resize.apply(self, sizes)
def resize_as(self, tensor):
warnings.warn("non-inplace resize_as is deprecated")
from torch.autograd._functions import Resize
return Resize.apply(self, tensor.size())
def split(self, split_size, dim=0):
r"""See :func:`torch.split`
"""
if isinstance(split_size, int):
return super(Tensor, self).split(split_size, dim)
else:
return super(Tensor, self).split_with_sizes(split_size, dim)
def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None):
r"""Returns the unique elements of the input tensor.
See :func:`torch.unique`
"""
return torch.unique(self, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None):
r"""Eliminates all but the first element from every consecutive group of equivalent elements.
See :func:`torch.unique_consecutive`
"""
return torch.unique_consecutive(self, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
def __rsub__(self, other):
return _C._VariableFunctions.rsub(self, other)
def __rdiv__(self, other):
if self.dtype.is_floating_point:
return self.reciprocal() * other
else:
return (self.double().reciprocal() * other).type_as(self)
__rtruediv__ = __rdiv__
__itruediv__ = _C._TensorBase.__idiv__
__pow__ = _C._TensorBase.pow
def __format__(self, format_spec):
if self.dim() == 0:
return self.item().__format__(format_spec)
return object.__format__(self, format_spec)
def __ipow__(self, other):
raise NotImplementedError("in-place pow not implemented")
def __rpow__(self, other):
return self.new_tensor(other) ** self
def __floordiv__(self, other):
result = self / other
if result.dtype.is_floating_point:
result = result.trunc()
return result
def __rfloordiv__(self, other):
result = other / self
if result.dtype.is_floating_point:
result = result.trunc()
return result
__neg__ = _C._TensorBase.neg
__eq__ = _C._TensorBase.eq
__ne__ = _C._TensorBase.ne
__lt__ = _C._TensorBase.lt
__le__ = _C._TensorBase.le
__gt__ = _C._TensorBase.gt
__ge__ = _C._TensorBase.ge
__abs__ = _C._TensorBase.abs
def __len__(self):
if self.dim() == 0:
raise TypeError("len() of a 0-d tensor")
return self.shape[0]
def __iter__(self):
# NB: we use 'imap' and not 'map' here, so that in Python 2 we get a
# generator and don't eagerly perform all the indexes. This could
# save us work, and also helps keep trace ordering deterministic
# (e.g., if you zip(*hiddens), the eager map will force all the
# indexes of hiddens[0] before hiddens[1], while the generator
# map will interleave them.)
if self.dim() == 0:
raise TypeError('iteration over a 0-d tensor')
if torch._C._get_tracing_state():
warnings.warn('Iterating over a tensor might cause the trace to be incorrect. '
'Passing a tensor of different shape won\'t change the number of '
'iterations executed (and might lead to errors or silently give '
'incorrect results).', category=RuntimeWarning)
return iter(imap(lambda i: self[i], range(self.size(0))))
def __hash__(self):
return id(self)
def __dir__(self):
tensor_methods = dir(self.__class__)
tensor_methods.remove('volatile') # deprecated
attrs = list(self.__dict__.keys())
keys = tensor_methods + attrs
# property only available dense, cuda tensors
if (not self.is_cuda) or self.is_sparse:
keys.remove("__cuda_array_interface__")
return sorted(keys)
# Numpy array interface, to support `numpy.asarray(tensor) -> ndarray`
__array_priority__ = 1000 # prefer Tensor ops over numpy ones
def __array__(self, dtype=None):
if dtype is None:
return self.numpy()
else:
return self.numpy().astype(dtype, copy=False)
# Wrap Numpy array again in a suitable tensor when done, to support e.g.
# `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor`
def __array_wrap__(self, array):
if array.dtype == bool:
# Workaround, torch has no built-in bool tensor
array = array.astype('uint8')
return torch.from_numpy(array)
def __contains__(self, element):
r"""Check if `element` is present in tensor
Arguments:
element (Tensor or scalar): element to be checked
for presence in current tensor"
"""
if isinstance(element, (torch.Tensor, Number)):
return (element == self).any().item()
return NotImplemented
@property
def __cuda_array_interface__(self):
"""Array view description for cuda tensors.
See:
https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html
"""
# raise AttributeError for unsupported tensors, so that
# hasattr(cpu_tensor, "__cuda_array_interface__") is False.
if not self.is_cuda:
raise AttributeError(
"Can't get __cuda_array_interface__ on non-CUDA tensor type: %s "
"If CUDA data is required use tensor.cuda() to copy tensor to device memory." %
self.type()
)
if self.is_sparse:
raise AttributeError(
"Can't get __cuda_array_interface__ on sparse type: %s "
"Use Tensor.to_dense() to convert to a dense tensor first." %
self.type()
)
# RuntimeError, matching tensor.__array__() behavior.
if self.requires_grad:
raise RuntimeError(
"Can't get __cuda_array_interface__ on Variable that requires grad. "
"If gradients aren't required, use var.detach() to get Variable that doesn't require grad."
)
# CUDA devices are little-endian and tensors are stored in native byte
# order. 1-byte entries are endian-agnostic.
typestr = {
torch.float16: "<f2",
torch.float32: "<f4",
torch.float64: "<f8",
torch.uint8: "|u1",
torch.int8: "|i1",
torch.int16: "<i2",
torch.int32: "<i4",
torch.int64: "<i8",
}[self.dtype]
itemsize = self.storage().element_size()
shape = tuple(self.shape)
strides = tuple(s * itemsize for s in self.stride())
data = (self.data_ptr(), False) # read-only is false
return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=1)
def names_(self, *names, **rename_map):
# Note [names_ / renamed API]
# The Python API for these is different from the C++ API. In Python:
# 1) tensor.renamed(*names) takes a vararglist of names
# 2) tensor.renamed(**rename_map) takes a map of names to rename.
# C++ is static, making it difficult to implement similar behavior.
return _update_names(self, names, rename_map, inplace=True)
def renamed(self, *names, **rename_map):
# See Note [names_ / renamed API]
return _update_names(self, names, rename_map, inplace=False)
def _update_names(self, names, inplace):
# See Note [names_ / renamed API]
if inplace:
return super(Tensor, self).names_(names)
else:
return super(Tensor, self).renamed(names)
__module__ = 'torch'