forked from WonwoongCho/Generative-Inpainting-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
91 lines (74 loc) · 3.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import torch.nn as nn
from model_module import *
from torch.autograd import Variable
from util import *
class Generator(nn.Module):
def __init__(self, first_dim=32):
super(Generator,self).__init__()
self.stage_1 = CoarseNet(5, first_dim)
self.stage_2 = RefinementNet(5, first_dim)
def forward(self, masked_img, mask): # mask : 1 x 1 x H x W
# border, maybe
mask = mask.expand(masked_img.size(0),1,masked_img.size(2),masked_img.size(3))
ones = to_var(torch.ones(mask.size()))
# stage1
stage1_input = torch.cat([masked_img, ones, ones*mask], dim=1)
stage1_output, resized_mask = self.stage_1(stage1_input, mask[0].unsqueeze(0))
# stage2
new_masked_img = stage1_output*mask + masked_img.clone()*(1.-mask)
stage2_input = torch.cat([new_masked_img, ones, ones*mask], dim=1)
stage2_output, offset_flow = self.stage_2(stage2_input, resized_mask[0].unsqueeze(0))
return stage1_output, stage2_output, offset_flow
class CoarseNet(nn.Module):
'''
# input: B x 5 x W x H
# after down: B x 128(32*4) x W/4 x H/4
# after atrous: same with the output size of the down module
# after up : same with the input size
'''
def __init__(self, in_ch, out_ch):
super(CoarseNet,self).__init__()
self.down = Down_Module(in_ch, out_ch)
self.atrous = Dilation_Module(out_ch*4, out_ch*4)
self.up = Up_Module(out_ch*4, 3)
def forward(self, x, mask):
x = self.down(x)
resized_mask = down_sample(mask, scale_factor=0.25, mode='nearest')
x = self.atrous(x)
x = self.up(x)
return x, resized_mask
class RefinementNet(nn.Module):
'''
# input: B x 5 x W x H
# after down: B x 128(32*4) x W/4 x H/4
# after atrous: same with the output size of the down module
# after up : same with the input size
'''
def __init__(self, in_ch, out_ch):
super(RefinementNet,self).__init__()
self.down_conv_branch = Down_Module(in_ch, out_ch)
self.down_attn_branch = Down_Module(in_ch, out_ch, activation=nn.ReLU())
self.atrous = Dilation_Module(out_ch*4, out_ch*4)
self.CAttn = Contextual_Attention_Module(out_ch*4, out_ch*4)
self.up = Up_Module(out_ch*8, 3, isRefine=True)
def forward(self, x, resized_mask):
# conv branch
conv_x = self.down_conv_branch(x)
conv_x = self.atrous(conv_x)
# attention branch
attn_x = self.down_attn_branch(x)
attn_x, offset_flow = self.CAttn(attn_x, attn_x, mask=resized_mask) # attn_x => B x 128(32*4) x W/4 x H/4
# concat two branches
deconv_x = torch.cat([conv_x, attn_x], dim=1) # deconv_x => B x 256 x W/4 x H/4
x = self.up(deconv_x)
return x, offset_flow
class Discriminator(nn.Module):
def __init__(self, first_dim=64):
super(Discriminator,self).__init__()
self.global_discriminator = Flatten_Module(3, first_dim, False)
self.local_discriminator = Flatten_Module(3, first_dim, True)
def forward(self, global_x, local_x):
global_y = self.global_discriminator(global_x)
local_y = self.local_discriminator(local_x)
return global_y, local_y # B x 256*(256 or 512)