-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmetric_recorder.py
309 lines (269 loc) · 13.7 KB
/
metric_recorder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -*- coding: utf-8 -*-
# @Time : 2021/1/4
# @Author : Lart Pang
# @GitHub : https://github.com/lartpang
import os
import sys
import cv2
import numpy as np
sys.path.append("..")
import py_sod_metrics
def ndarray_to_basetype(data):
"""
将单独的ndarray,或者tuple,list或者dict中的ndarray转化为基本数据类型,
即列表(.tolist())和python标量
"""
def _to_list_or_scalar(item):
listed_item = item.tolist()
if isinstance(listed_item, list) and len(listed_item) == 1:
listed_item = listed_item[0]
return listed_item
if isinstance(data, (tuple, list)):
results = [_to_list_or_scalar(item) for item in data]
elif isinstance(data, dict):
results = {k: _to_list_or_scalar(item) for k, item in data.items()}
else:
assert isinstance(data, np.ndarray)
results = _to_list_or_scalar(data)
return results
INDIVADUAL_METRIC_MAPPING = {
"mae": py_sod_metrics.MAE,
"fm": py_sod_metrics.Fmeasure,
"em": py_sod_metrics.Emeasure,
"sm": py_sod_metrics.Smeasure,
"wfm": py_sod_metrics.WeightedFmeasure,
}
class GrayscaleMetricRecorderV1:
def __init__(self):
"""
用于统计各种指标的类
https://github.com/lartpang/Py-SOD-VOS-EvalToolkit/blob/81ce89da6813fdd3e22e3f20e3a09fe1e4a1a87c/utils/recorders/metric_recorder.py
主要应用于旧版本实现中的五个指标,即mae/fm/sm/em/wfm。推荐使用V2版本。
"""
self.mae = INDIVADUAL_METRIC_MAPPING["mae"]()
self.fm = INDIVADUAL_METRIC_MAPPING["fm"]()
self.sm = INDIVADUAL_METRIC_MAPPING["sm"]()
self.em = INDIVADUAL_METRIC_MAPPING["em"]()
self.wfm = INDIVADUAL_METRIC_MAPPING["wfm"]()
def step(self, pre: np.ndarray, gt: np.ndarray):
assert pre.shape == gt.shape
assert pre.dtype == np.uint8
assert gt.dtype == np.uint8
self.mae.step(pre, gt)
self.sm.step(pre, gt)
self.fm.step(pre, gt)
self.em.step(pre, gt)
self.wfm.step(pre, gt)
def get_results(self, num_bits: int = 3, return_ndarray: bool = False) -> dict:
"""
返回指标计算结果:
- 曲线数据(sequential): fm/em/p/r
- 数值指标(numerical): SM/MAE/maxE/avgE/adpE/maxF/avgF/adpF/wFm
"""
fm_info = self.fm.get_results()
fm = fm_info["fm"]
pr = fm_info["pr"]
wfm = self.wfm.get_results()["wfm"]
sm = self.sm.get_results()["sm"]
em = self.em.get_results()["em"]
mae = self.mae.get_results()["mae"]
sequential_results = {
"fm": np.flip(fm["curve"]),
"em": np.flip(em["curve"]),
"p": np.flip(pr["p"]),
"r": np.flip(pr["r"]),
}
numerical_results = {
"SM": sm,
"MAE": mae,
"maxE": em["curve"].max(),
"avgE": em["curve"].mean(),
"adpE": em["adp"],
"maxF": fm["curve"].max(),
"avgF": fm["curve"].mean(),
"adpF": fm["adp"],
"wFm": wfm,
}
if num_bits is not None and isinstance(num_bits, int):
numerical_results = {k: v.round(num_bits) for k, v in numerical_results.items()}
if not return_ndarray:
sequential_results = ndarray_to_basetype(sequential_results)
numerical_results = ndarray_to_basetype(numerical_results)
return {"sequential": sequential_results, "numerical": numerical_results}
sample_gray = dict(with_adaptive=True, with_dynamic=True)
sample_bin = dict(with_adaptive=False, with_dynamic=False, with_binary=True, sample_based=True)
overall_bin = dict(with_adaptive=False, with_dynamic=False, with_binary=True, sample_based=False)
# fmt: off
GRAYSCALE_METRIC_MAPPING = {
# 灰度数据指标
"fm": {"handler": py_sod_metrics.FmeasureHandler, "kwargs": dict(**sample_gray, beta=0.3)},
"f1": {"handler": py_sod_metrics.FmeasureHandler, "kwargs": dict(**sample_gray, beta=1)},
"pre": {"handler": py_sod_metrics.PrecisionHandler, "kwargs": sample_gray},
"rec": {"handler": py_sod_metrics.RecallHandler, "kwargs": sample_gray},
"iou": {"handler": py_sod_metrics.IOUHandler, "kwargs": sample_gray},
"dice": {"handler": py_sod_metrics.DICEHandler, "kwargs": sample_gray},
"spec": {"handler": py_sod_metrics.SpecificityHandler, "kwargs": sample_gray},
"ber": {"handler": py_sod_metrics.BERHandler, "kwargs": sample_gray},
"oa": {"handler": py_sod_metrics.OverallAccuracyHandler, "kwargs": sample_gray},
"kappa": {"handler": py_sod_metrics.KappaHandler, "kwargs": sample_gray},
}
BINARY_METRIC_MAPPING = {
# 二值化数据指标的特殊情况一:各个样本独立计算指标后取平均
"sample_bifm": {"handler": py_sod_metrics.FmeasureHandler, "kwargs": dict(**sample_bin, beta=0.3)},
"sample_bif1": {"handler": py_sod_metrics.FmeasureHandler, "kwargs": dict(**sample_bin, beta=1)},
"sample_bipre": {"handler": py_sod_metrics.PrecisionHandler, "kwargs": sample_bin},
"sample_birec": {"handler": py_sod_metrics.RecallHandler, "kwargs": sample_bin},
"sample_biiou": {"handler": py_sod_metrics.IOUHandler, "kwargs": sample_bin},
"sample_bidice": {"handler": py_sod_metrics.DICEHandler, "kwargs": sample_bin},
"sample_bispec": {"handler": py_sod_metrics.SpecificityHandler, "kwargs": sample_bin},
"sample_biber": {"handler": py_sod_metrics.BERHandler, "kwargs": sample_bin},
"sample_bioa": {"handler": py_sod_metrics.OverallAccuracyHandler, "kwargs": sample_bin},
"sample_bikappa": {"handler": py_sod_metrics.KappaHandler, "kwargs": sample_bin},
# 二值化数据指标的特殊情况二:汇总所有样本的tp、fp、tn、fn后整体计算指标
"overall_bifm": {"handler": py_sod_metrics.FmeasureHandler, "kwargs": dict(**overall_bin, beta=0.3)},
"overall_bif1": {"handler": py_sod_metrics.FmeasureHandler, "kwargs": dict(**overall_bin, beta=1)},
"overall_bipre": {"handler": py_sod_metrics.PrecisionHandler, "kwargs": overall_bin},
"overall_birec": {"handler": py_sod_metrics.RecallHandler, "kwargs": overall_bin},
"overall_biiou": {"handler": py_sod_metrics.IOUHandler, "kwargs": overall_bin},
"overall_bidice": {"handler": py_sod_metrics.DICEHandler, "kwargs": overall_bin},
"overall_bispec": {"handler": py_sod_metrics.SpecificityHandler, "kwargs": overall_bin},
"overall_biber": {"handler": py_sod_metrics.BERHandler, "kwargs": overall_bin},
"overall_bioa": {"handler": py_sod_metrics.OverallAccuracyHandler, "kwargs": overall_bin},
"overall_bikappa": {"handler": py_sod_metrics.KappaHandler, "kwargs": overall_bin},
}
# fmt: on
class GrayscaleMetricRecorderV2:
suppoted_metrics = ["mae", "em", "sm", "wfm"] + sorted(GRAYSCALE_METRIC_MAPPING.keys())
def __init__(self, metric_names=("sm", "wfm", "mae", "fmeasure", "em")):
"""
用于统计各种指标的类,支持更多的指标,更好的兼容性。
"""
if not metric_names:
metric_names = self.suppoted_metrics
assert all(
[m in self.suppoted_metrics for m in metric_names]
), f"Only support: {self.suppoted_metrics}"
self.metric_objs = {}
has_existed = False
for metric_name in metric_names:
if metric_name in INDIVADUAL_METRIC_MAPPING:
self.metric_objs[metric_name] = INDIVADUAL_METRIC_MAPPING[metric_name]()
else: # metric_name in GRAYSCALE_METRIC_MAPPING
if not has_existed: # only init once
self.metric_objs["fmeasurev2"] = py_sod_metrics.FmeasureV2()
has_existed = True
metric_handler = GRAYSCALE_METRIC_MAPPING[metric_name]
self.metric_objs["fmeasurev2"].add_handler(
handler_name=metric_name,
metric_handler=metric_handler["handler"](**metric_handler["kwargs"]),
)
def step(self, pre: np.ndarray, gt: np.ndarray):
assert pre.shape == gt.shape, (pre.shape, gt.shape)
assert pre.dtype == gt.dtype == np.uint8, (pre.dtype, gt.dtype)
for m_obj in self.metric_objs.values():
m_obj.step(pre, gt)
def get_all_results(self, num_bits: int = 3, return_ndarray: bool = False) -> dict:
sequential_results = {}
numerical_results = {}
for m_name, m_obj in self.metric_objs.items():
info = m_obj.get_results()
if m_name == "fmeasurev2":
for _name, results in info.items():
dynamic_results = results.get("dynamic")
adaptive_results = results.get("adaptive")
if dynamic_results is not None:
sequential_results[_name] = np.flip(dynamic_results)
numerical_results[f"max{_name}"] = dynamic_results.max()
numerical_results[f"avg{_name}"] = dynamic_results.mean()
if adaptive_results is not None:
numerical_results[f"adp{_name}"] = adaptive_results
else:
results = info[m_name]
if m_name in ("wfm", "sm", "mae"):
numerical_results[m_name] = results
elif m_name in ("fm", "em"):
sequential_results[m_name] = np.flip(results["curve"])
numerical_results.update(
{
f"max{m_name}": results["curve"].max(),
f"avg{m_name}": results["curve"].mean(),
f"adp{m_name}": results["adp"],
}
)
else:
raise NotImplementedError(m_name)
if num_bits is not None and isinstance(num_bits, int):
numerical_results = {k: v.round(num_bits) for k, v in numerical_results.items()}
if not return_ndarray:
sequential_results = ndarray_to_basetype(sequential_results)
numerical_results = ndarray_to_basetype(numerical_results)
return {"sequential": sequential_results, "numerical": numerical_results}
def show(self, num_bits: int = 3, return_ndarray: bool = False) -> dict:
return self.get_all_results(num_bits=num_bits, return_ndarray=return_ndarray)["numerical"]
class BinaryMetricRecorder:
suppoted_metrics = ["mae", "sm", "wfm"] + sorted(BINARY_METRIC_MAPPING.keys())
def __init__(self, metric_names=("bif1", "biprecision", "birecall", "biiou")):
"""
用于统计各种指标的类,主要适用于对单通道灰度图计算二值图像的指标。
"""
if not metric_names:
metric_names = self.suppoted_metrics
assert all(
[m in self.suppoted_metrics for m in metric_names]
), f"Only support: {self.suppoted_metrics}"
self.metric_objs = {}
has_existed = False
for metric_name in metric_names:
if metric_name in INDIVADUAL_METRIC_MAPPING:
self.metric_objs[metric_name] = INDIVADUAL_METRIC_MAPPING[metric_name]()
else: # metric_name in BINARY_METRIC_MAPPING
if not has_existed: # only init once
self.metric_objs["fmeasurev2"] = py_sod_metrics.FmeasureV2()
has_existed = True
metric_handler = BINARY_METRIC_MAPPING[metric_name]
self.metric_objs["fmeasurev2"].add_handler(
handler_name=metric_name,
metric_handler=metric_handler["handler"](**metric_handler["kwargs"]),
)
def step(self, pre: np.ndarray, gt: np.ndarray):
assert pre.shape == gt.shape, (pre.shape, gt.shape)
assert pre.dtype == gt.dtype == np.uint8, (pre.dtype, gt.dtype)
for m_obj in self.metric_objs.values():
m_obj.step(pre, gt)
def get_all_results(self, num_bits: int = 3, return_ndarray: bool = False) -> dict:
numerical_results = {}
for m_name, m_obj in self.metric_objs.items():
info = m_obj.get_results()
if m_name == "fmeasurev2":
for _name, results in info.items():
binary_results = results.get("binary")
if binary_results is not None:
numerical_results[_name] = binary_results
else:
results = info[m_name]
if m_name in ("mae", "sm", "wfm"):
numerical_results[m_name] = results
else:
raise NotImplementedError(m_name)
if num_bits is not None and isinstance(num_bits, int):
numerical_results = {k: v.round(num_bits) for k, v in numerical_results.items()}
if not return_ndarray:
numerical_results = ndarray_to_basetype(numerical_results)
return {"numerical": numerical_results}
def show(self, num_bits: int = 3, return_ndarray: bool = False) -> dict:
return self.get_all_results(num_bits=num_bits, return_ndarray=return_ndarray)["numerical"]
if __name__ == "__main__":
data_root = "./test_data"
mask_root = os.path.join(data_root, "masks")
pred_root = os.path.join(data_root, "preds")
masks = [os.path.join(mask_root, f) for f in sorted(os.listdir(mask_root))]
preds = [os.path.join(pred_root, f) for f in sorted(os.listdir(pred_root))]
metrics_v1 = GrayscaleMetricRecorderV2(metric_names=GrayscaleMetricRecorderV2.suppoted_metrics)
metrics_v2 = BinaryMetricRecorder(metric_names=BinaryMetricRecorder.suppoted_metrics)
for mask, pred in zip(masks, preds):
mask = cv2.imread(mask, cv2.IMREAD_GRAYSCALE)
pred = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
metrics_v1.step(pred, mask)
metrics_v2.step(pred, mask)
print(metrics_v1.show())
print(metrics_v2.show())