You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[12], line 9
1 model = LassoNetRegressor()
3 model.fit(X=train_df.drop('target', axis=1),
4 y=train_df['target'],
5 X_val=val_df.drop('target', axis=1),
6 y_val=val_df['target']
7 )
----> 9 model.score(test_df.drop('target', axis=1), test_df['target'])
11 # print("Best model scored", model.score(test_df.drop('target', axis=1), test_df['target']))
12 # print("Lambda =", model.best_lambda_)
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/sklearn/base.py:849, in RegressorMixin.score(self, X, y, sample_weight)
846 from .metrics import r2_score
848 y_pred = self.predict(X)
--> 849 return r2_score(y, y_pred, sample_weight=sample_weight)
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/sklearn/utils/_param_validation.py:213, in validate_params.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
207 try:
208 with config_context(
209 skip_parameter_validation=(
210 prefer_skip_nested_validation or global_skip_validation
211 )
212 ):
--> 213 return func(*args, **kwargs)
214 except InvalidParameterError as e:
215 # When the function is just a wrapper around an estimator, we allow
216 # the function to delegate validation to the estimator, but we replace
217 # the name of the estimator by the name of the function in the error
218 # message to avoid confusion.
219 msg = re.sub(
220 r"parameter of \w+ must be",
221 f"parameter of {func.__qualname__} must be",
222 str(e),
223 )
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/sklearn/metrics/_regression.py:1180, in r2_score(y_true, y_pred, sample_weight, multioutput, force_finite)
1039 @validate_params(
1040 {
1041 "y_true": ["array-like"],
(...)
1059 force_finite=True,
1060 ):
1061 """:math:`R^2` (coefficient of determination) regression score function.
1062
1063 Best possible score is 1.0 and it can be negative (because the
(...)
1178 -inf
1179 """
-> 1180 y_type, y_true, y_pred, multioutput = _check_reg_targets(
1181 y_true, y_pred, multioutput
1182 )
1183 check_consistent_length(y_true, y_pred, sample_weight)
1185 if _num_samples(y_pred) < 2:
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/sklearn/metrics/_regression.py:104, in _check_reg_targets(y_true, y_pred, multioutput, dtype)
102 check_consistent_length(y_true, y_pred)
103 y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
--> 104 y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
106 if y_true.ndim == 1:
107 y_true = y_true.reshape((-1, 1))
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/sklearn/utils/validation.py:997, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)
995 array = xp.astype(array, dtype, copy=False)
996 else:
--> 997 array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp)
998 except ComplexWarning as complex_warning:
999 raise ValueError(
1000 "Complex data not supported\n{}\n".format(array)
1001 ) from complex_warning
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/sklearn/utils/_array_api.py:521, in _asarray_with_order(array, dtype, order, copy, xp)
519 array = numpy.array(array, order=order, dtype=dtype)
520 else:
--> 521 array = numpy.asarray(array, order=order, dtype=dtype)
523 # At this point array is a NumPy ndarray. We convert it to an array
524 # container that is consistent with the input's namespace.
525 return xp.asarray(array)
File ~/miniconda3/envs/pytorch/lib/python3.9/site-packages/torch/_tensor.py:1062, in Tensor.__array__(self, dtype)
1060 return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype)
1061 if dtype is None:
-> 1062 return self.numpy()
1063 else:
1064 return self.numpy().astype(dtype, copy=False)
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
Since I am using the interface of LassoNet, I don't think I have much flexibility to modify the code.
Do you have any idea what might cause this error and how should I fix it?
Thank you very much!
The text was updated successfully, but these errors were encountered:
We could handle this in the library but in the meantime, you can probably call predict yourself, then move the result to CPU before calling the scoring function on the output.
Dear authors,
I am running the following code and get the TypeError:
The error:
Since I am using the interface of LassoNet, I don't think I have much flexibility to modify the code.
Do you have any idea what might cause this error and how should I fix it?
Thank you very much!
The text was updated successfully, but these errors were encountered: