This repository has been archived by the owner on Oct 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 751
/
Copy pathESRGAN.py
110 lines (84 loc) · 3.29 KB
/
ESRGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import time
from PIL import Image
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt
# Set environment variable for TensorFlow Hub download progress
os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True"
# Download the image file
!wget "https://user-images.githubusercontent.com/12981474/40157448-eff91f06-5953-11e8-9a37-f6b5693fa03f.png" -O input_image.png
# Constants
IMAGE_FILE_PATH = "input_image.png"
MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1"
def prepare_image(file_path):
""" Load image from path and preprocess it to make it model ready """
high_res_img = tf.image.decode_image(tf.io.read_file(file_path))
# If PNG, remove the alpha channel. The model only supports images with 3 color channels.
if high_res_img.shape[-1] == 4:
high_res_img = high_res_img[...,:-1]
high_res_size = (tf.convert_to_tensor(high_res_img.shape[:-1]) // 4) * 4
high_res_img = tf.image.crop_to_bounding_box(high_res_img, 0, 0, high_res_size[0], high_res_size[1])
high_res_img = tf.cast(high_res_img, tf.float32)
return tf.expand_dims(high_res_img, 0)
def store_image(image_tensor, filename):
"""
Saves unscaled Tensor Images.
Args:
image_tensor: 3D image tensor. [height, width, channels]
filename: Name of the file to save.
"""
if not isinstance(image_tensor, Image.Image):
image_tensor = tf.clip_by_value(image_tensor, 0, 255)
image_tensor = Image.fromarray(tf.cast(image_tensor, tf.uint8).numpy())
image_tensor.save("%s.jpg" % filename)
print("Saved as %s.jpg" % filename)
def display_image(image_tensor, title=""):
"""
Plots images from image tensors.
Args:
image_tensor: 3D image tensor. [height, width, channels].
title: Title to display in the plot.
"""
image_array = np.asarray(image_tensor)
image_array = tf.clip_by_value(image_array, 0, 255)
display_image = Image.fromarray(tf.cast(image_array, tf.uint8).numpy())
plt.imshow(display_image)
plt.axis("off")
plt.title(title)
# Preprocess the image
high_res_image = prepare_image(IMAGE_FILE_PATH)
# Plotting Original Resolution image
display_image(tf.squeeze(high_res_image), title="Original Image")
store_image(tf.squeeze(high_res_image), filename="Original_Image")
# Load the pre-trained model from TensorFlow Hub
pretrained_model = hub.load(MODEL_PATH)
# Time the model prediction
start_time = time.time()
generated_image = pretrained_model(high_res_image)
generated_image = tf.squeeze(generated_image)
print("Time Taken: %f" % (time.time() - start_time))
# Plotting Super Resolution Image
display_image(tf.squeeze(generated_image), title="Super Resolution")
store_image(tf.squeeze(generated_image), filename="Super_Resolution")
# Set the figure size
plt.rcParams['figure.figsize'] = [15, 10]
# Create subplots
fig, axes = plt.subplots(1, 3)
fig.tight_layout()
# Plot original image
plt.subplot(131)
display_image(tf.squeeze(high_res_image), title="Original")
# Plot low resolution image
plt.subplot(132)
fig.tight_layout()
display_image(tf.squeeze(low_res_image), "x4 Bicubic")
# Plot super resolution image
plt.subplot(133)
fig.tight_layout()
display_image(tf.squeeze(generated_image), "Super Resolution")
# Save the figure
plt.savefig("ESRGAN_DIV2K.jpg", bbox_inches="tight")
# Print PSNR value
print("PSNR: %f" % psnr)