-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
236 lines (196 loc) · 8.62 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
Demo script showing detections in sample images.
See README.md for installation instructions before running.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from lib.config import config as cfg
from lib.utils.nms_wrapper import nms
from lib.utils.test import im_detect,test_net
#from nets.resnet_v1 import resnetv1
from lib.nets.vgg16 import vgg16
from lib.nets.resnet_v1 import resnetv1
from lib.nets.resnet_v1_att import resnetv1
#from lib.nets.vgg16gate import vgg16
from lib.utils.timer import Timer
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from lib.utils.test import test_net
from lib.datasets.factory import get_imdb
# CLASSES = ('__background__',
# 'aeroplane', 'bicycle', 'bird', 'boat',
# 'bottle', 'bus', 'car', 'cat', 'chair',
# 'cow', 'diningtable', 'dog', 'horse',
# 'motorbike', 'person', 'pottedplant',
# 'sheep', 'sofa', 'train', 'tvmonitor')
# CLASSES = ('__background__',
# 'finger')
CLASSES = ('__background__',
'zangpian','loujiang','duanshan','bengbian')
#'crackle')
NETS = {'vgg16': ('vgg16_faster_rcnn_iter_70000.ckpt',), 'res101': ('res101_faster_rcnn_iter_110000.ckpt',)}
DATASETS = {'pascal_voc': ('voc_2007_trainval',), 'pascal_voc_0712': ('voc_2007_trainval+voc_2012_trainval',)}
def vis_detections(det_txt, image_id, ax, im, class_name, dets, thresh=0.5):
"""Draw detected bounding boxes."""
#print("+_+")
#print(class_name,dets,thresh)
inds = np.where(dets[:, -1] >= thresh)[0]
print("!!!")
print(inds) # 是否检测出来东西,如果有的话为0如果没有为空
if len(inds) == 0:
return
#print(im.shape) # 4000 6000 3
#调整通道顺序,如果不调整通道顺序,图像就不正常
test_proposal = np.shape(dets)
num_proposal = test_proposal[0]
for i in inds:
#for i in range(num_proposal):
bbox = dets[i, :4]
score = dets[i, -1]
#print(bbox[0],bbox[1],bbox[2],bbox[3])
print("add one patch")
det_txt.write(str(image_id) + ' ' + str(score) + ' ' + str(bbox[0]) + ' ' + str(bbox[1]) + ' ' + str(
bbox[2]) + ' ' + str(bbox[3]))
det_txt.write("\n")
if class_name == 'finger':
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='red', linewidth=2)
)
ax.text(bbox[0]-96, bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=18, color='white')
else:
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='cyan', linewidth=2)
)
ax.text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=18, color='white')
ax.set_title(('{} detections with '
'p({} | box) >= {:.1f}').format(class_name, class_name,thresh),fontsize=12)
def demo(sess, net, image_name, det_txt):
"""Detect object classes in an image using pre-computed object proposals."""
# Load the demo image
im_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo_bengbian', image_name)
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
# detect the picture to find score and boxes
scores, boxes = im_detect(sess, net,im,image_name)
# 检测主体部分,在这里加上save_feature_picture
# 这里的net内容是vgg
timer.toc()
print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0]))
# Visualize detections for each class
CONF_THRESH = 0.5
NMS_THRESH = 0.1
im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(10,10))
ax.imshow(im, aspect='equal')
image_id = image_name.split('.')[0]
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
inds = np.where(dets[:, -1] >= 0.5)[0]
print("!!!")
print(inds) # 是否检测出来东西,如果有的话为0如果没有为空
if len(inds) == 0:
a = 1
else:
a = 0
vis_detections(det_txt, image_id, ax,im, cls, dets, thresh=CONF_THRESH)
# vis_detections(det_txt, image_id, ax, im, cls, dets, thresh=CONF_THRESH)
plt.draw()
return a
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Tensorflow Faster R-CNN demo')
parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16 res101]',
choices=NETS.keys(), default='resnetv1')
parser.add_argument('--dataset', dest='dataset', help='Trained dataset [pascal_voc pascal_voc_0712]',
choices=DATASETS.keys(), default='pascal_voc')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
# model path
demonet = args.demo_net
dataset = args.dataset
# tfmodel = os.path.join('output', demonet, DATASETS[dataset][0], 'default', NETS[demonet][0])
# tfmodel=r'D:\Users\Binyi_Su\Experiments\Faster-rcnn\Faster-RCNN-TensorFlow-Python3.5-master\output\vgg16\voc_2007_trainval\default\vgg16_faster_rcnn_iter_20000.ckpt'
#tfmodel='default18/voc_2007_trainval/default/vgg16_faster_rcnn_iter_40000.ckpt'
tfmodel = 'default_resnet/voc_2007_trainval/resnetv1-att/vgg16_faster_rcnn_iter_40000.ckpt'
#tfmodel ='D://Users//lc//Faster - RCNN - lc//default_resnet_att//voc_2007_trainval//resnetv1//vgg16_faster_rcnn_iter_40000.ckpt'
if not os.path.isfile(tfmodel + '.meta'):
print(tfmodel)
raise IOError(('{:s} not found.\nDid you download the proper networks from '
'our server and place them properly?').format(tfmodel + '.meta4'))
# set config
tfconfig = tf.ConfigProto(allow_soft_placement=True)
tfconfig.gpu_options.allow_growth = True
# init session
sess = tf.Session(config=tfconfig)
# load network
if demonet == 'vgg16':
net = vgg16(batch_size=1)
elif demonet == 'resnetv1':
net = resnetv1(batch_size=1, num_layers=50)
else:
raise NotImplementedError
layers = net.create_architecture(sess, "TEST", 5,
tag='default', anchor_scales=[8, 16, 32])
# spatial_attention = tf.reshape(spatial_attention,[32, 32])
print(layers)
# plt.imshow(spatial_attention)
saver = tf.train.Saver()
saver.restore(sess, tfmodel)
print('Loaded network {:s}'.format(tfmodel))
# im_names = ['65.bmp', '66.bmp', '67.bmp', '68.bmp',
# '69.bmp', '70.bmp','71.bmp','72.bmp','73.bmp','74.bmp','75.bmp']
# im_names = ['1.jpg', '2.jpg', '3.jpg', '4.jpg',
# '5.jpg','6.jpg', '7.jpg', '8.jpg', '9.jpg', '10.jpg']
im_names = os.listdir('F:\\fastercnn\\data\\demo_bengbian')
det_txt = open(
"F:\\fastercnn\\default_resnet\\test-txt\\resnet50_att_bengbian.txt", 'w')
sum = 0
total = 0
for im_name in im_names:
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
print('Demo for data/demo/{}'.format(im_name))
a = demo(sess, net, im_name, det_txt)
total = total + 1
sum = sum+a
# demo(sess, net, im_name, det_txt)
# output RPCAN feature map
# spatial_attention = np.reshape(spatial_attention, (38, 38))
# spatial_attention = cv2.resize(spatial_attention,(128,128))
# plt.imshow(spatial_attention)
# plt.imsave('C:\\Users\\Administrator\\Desktop\\feature_map\\a.jpg', spatial_attention)
plt.axis('off')
plt.savefig("default_resnet/testatt/finish"+im_name)
# imdb = get_imdb("voc_2007_trainval")
# test_net(sess, net, imdb, 'default')
# plt.show()
print("sum=",sum)
print("total=", total)