-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathpreprocess.py
98 lines (85 loc) · 3.09 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
from torchvision import datasets, transforms
def load_data(args):
print('Load Dataset :: {}'.format(args.dataset))
if args.dataset == 'CIFAR10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616)
)
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616)
)
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data', train=False, transform=transform_test),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers
)
elif args.dataset == 'CIFAR100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.5071, 0.4865, 0.4409),
std=(0.2673, 0.2564, 0.2762)
),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.5071, 0.4865, 0.4409),
std=(0.2673, 0.2564, 0.2762)
),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=False, transform=transform_test),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers
)
elif args.dataset == 'MNIST':
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.1307,),
std=(0.3081,)
)
])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=transform),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transform),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers
)
elif args.dataset == 'IMAGENET':
pass
return train_loader, test_loader