-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis_level3_amoc.py
executable file
·354 lines (271 loc) · 11.1 KB
/
analysis_level3_amoc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#!/usr/bin/ipython
#
# Copyright 2015, Plymouth Marine Laboratory
#
# This file is part of the bgc-val library.
#
# bgc-val is free software: you can redistribute it and/or modify it
# under the terms of the Revised Berkeley Software Distribution (BSD) 3-clause license.
# bgc-val is distributed in the hope that it will be useful, but
# without any warranty; without even the implied warranty of merchantability
# or fitness for a particular purpose. See the revised BSD license for more details.
# You should have received a copy of the revised BSD license along with bgc-val.
# If not, see <http://opensource.org/licenses/BSD-3-Clause>.
#
# Address:
# Plymouth Marine Laboratory
# Prospect Place, The Hoe
# Plymouth, PL1 3DH, UK
#
# Email:
#
"""
.. module:: analysis_level3_amoc
:platform: Unix
:synopsis: A script to produce a level 3 analysis for the AMOC.
.. moduleauthor:: Lee de Mora <[email protected]>
"""
#####
# Load Standard Python modules:
from sys import argv,exit
from os.path import exists
from calendar import month_name
from socket import gethostname
from netCDF4 import Dataset
from glob import glob
from scipy.interpolate import interp1d
import numpy as np
import os,sys
from getpass import getuser
from matplotlib import pyplot
from shelve import open as shOpen
#####
# Load specific local code:
import UKESMpython as ukp
from timeseries import timeseriesAnalysis
from timeseries import profileAnalysis
from timeseries import timeseriesPlots as tsp
#####
# User defined set of paths pointing towards the datasets.
import paths
def analysis_omz(jobID=''):
annual = True
analysisKeys = []
analysisKeys.append('AMOC_26N')
#analysisKeys.append('AMOC_32S')
analysisDict = {}
imagedir = ukp.folder(paths.imagedir +'/'+jobID+'/Level3/AMOC')
shelvedir = ukp.folder(paths.shelvedir+'/'+jobID+'/Level3/AMOC')
if annual: WOAFolder = paths.WOAFolder_annual
else: WOAFolder = paths.WOAFolder
#####
# make a link to the time series
for a in analysisKeys:
level1shelveFold = paths.shelvedir+'/timeseries/'+jobID
files = glob(level1shelveFold+'/*'+a+'*')
for f in files:
lnfile = shelvedir+os.path.basename(f)
if os.path.exists(lnfile):continue
print "linking ",f,lnfile
#assert 0
os.symlink(f,lnfile)
dataD = {}
modeldataD = {}
def listModelDataFiles(jobID, filekey, datafolder, annual):
if annual:
return sorted(glob(datafolder+jobID+"/"+jobID+"o_1y_*_"+filekey+".nc"))
else:
return sorted(glob(datafolder+jobID+"/"+jobID+"o_1m_*_"+filekey+".nc"))
medusaCoords = {'t':'time_counter', 'z':'deptht', 'lat': 'nav_lat', 'lon': 'nav_lon', 'cal': '360_day',} # model doesn't need time dict.
av = ukp.AutoVivification()
if 'AMOC_26N' in analysisKeys or 'AMOC_32S' in analysisKeys:
# Note that this will only work with the eORCAgrid.
latslice26N = slice(227,228)
latslice32S = slice(137,138)
e3v,e1v,tmask,alttmask = {},{},{},{}
for name in ['AMOC_26N','AMOC_32S']:
if name not in analysisKeys:continue
####
if name == 'AMOC_26N': latslice = latslice26N
if name == 'AMOC_32S': latslice = latslice32S
# Load grid data
nc = Dataset(paths.orcaGridfn,'r')
e3v[name] = nc.variables['e3v'][:,latslice,:] # z level height 3D
e1v[name] = nc.variables['e1v'][latslice,:] #
tmask[name] = nc.variables['tmask'][:,latslice,:]
nc.close()
# load basin mask
nc = Dataset('data/basinlandmask_eORCA1.nc','r')
alttmask[name] = nc.variables['tmaskatl'][latslice,:] # 2D Atlantic mask
nc.close()
def calc_amoc32S(nc,keys):
name = 'AMOC_32S'
zv = np.ma.array(nc.variables['vomecrty'][...,latslice32S,:]) # m/s
atlmoc = np.array(np.zeros_like(zv[0,:,:,0]))
e2vshape = e3v[name].shape
for la in range(e2vshape[1]): #ji, y
for lo in range(e2vshape[2]): #jj , x,
if int(alttmask[name][la,lo]) == 0: continue
for z in range(e2vshape[0]): # jk
if int(tmask[name][z,la,lo]) == 0: continue
if np.ma.is_masked(zv[0,z,la,lo]): continue
atlmoc[z,la] = atlmoc[z,la] - e1v[name][la,lo]*e3v[name][z,la,lo]*zv[0,z,la,lo]/1.E06
####
# Cumulative sum from the bottom up.
for z in range(73,1,-1):
atlmoc[z,:] = atlmoc[z+1,:] + atlmoc[z,:]
return np.ma.max(atlmoc)
def calc_amoc26N(nc,keys):
name = 'AMOC_26N'
zv = np.ma.array(nc.variables['vomecrty'][...,latslice26N,:]) # m/s
atlmoc = np.array(np.zeros_like(zv[0,:,:,0]))
e2vshape = e3v[name].shape
for la in range(e2vshape[1]): #ji, y
for lo in range(e2vshape[2]): #jj , x,
if int(alttmask[name][la,lo]) == 0: continue
for z in range(e2vshape[0]): # jk
if int(tmask[name][z,la,lo]) == 0: continue
if np.ma.is_masked(zv[0,z,la,lo]): continue
atlmoc[z,la] = atlmoc[z,la] - e1v[name][la,lo]*e3v[name][z,la,lo]*zv[0,z,la,lo]/1.E06
####
# Cumulative sum from the bottom up.
for z in range(73,1,-1):
atlmoc[z,:] = atlmoc[z+1,:] + atlmoc[z,:]
return np.ma.max(atlmoc)
for name in ['AMOC_26N','AMOC_32S']:
if name not in analysisKeys:continue
av[name]['modelFiles'] = listModelDataFiles(jobID, 'grid_V', paths.ModelFolder_pref, annual)
av[name]['dataFile'] = ''
av[name]['modelcoords'] = medusaCoords
av[name]['datacoords'] = medusaCoords
if name == 'AMOC_26N': av[name]['modeldetails']= {'name': name, 'vars':['vomecrty',], 'convert': calc_amoc26N,'units':'Sv'}
if name == 'AMOC_32S': av[name]['modeldetails']= {'name': name, 'vars':['vomecrty',], 'convert': calc_amoc32S,'units':'Sv'}
av[name]['datadetails'] = {'name':'','units':'',}
av[name]['layers'] = ['layerless',]
av[name]['regions'] = ['regionless',]
av[name]['metrics'] = ['metricless',]
av[name]['datasource'] = ''
av[name]['model'] = 'NEMO'
av[name]['modelgrid'] = 'eORCA1'
av[name]['gridFile'] = paths.orcaGridfn
av[name]['Dimensions'] = 1
#####
# Calling timeseriesAnalysis
# This is where the above settings is passed to timeseriesAnalysis, for the actual work to begin.
# We loop over all fiels in the first layer dictionary in the autovificiation, av.
#
# Once the timeseriesAnalysis has completed, we save all the output shelves in a dictionairy.
# At the moment, this dictioary is not used, but we could for instance open the shelve to highlight specific data,
# (ie, andy asked to produce a table showing the final year of data.
shelves = {}
shelves_insitu={}
for name in av.keys():
print "------------------------------------------------------------------"
print "analysis-Timeseries.py:\tBeginning to call timeseriesAnalysis for ", name
if len(av[name]['modelFiles']) == 0:
print "analysis-Timeseries.py:\tWARNING:\tmodel files are not found:",name,av[name]['modelFiles']
if strictFileCheck: assert 0
modelfilesexists = [os.path.exists(f) for f in av[name]['modelFiles']]
if False in modelfilesexists:
print "analysis-Timeseries.py:\tWARNING:\tnot model files do not all exist:",av[name]['modelFiles']
for f in av[name]['modelFiles']:
if os.path.exists(f):continue
print f, 'does not exist'
if strictFileCheck: assert 0
if av[name]['dataFile']!='':
if not os.path.exists(av[name]['dataFile']):
print "analysis-Timeseries.py:\tWARNING:\tdata file is not found:",av[name]['dataFile']
if strictFileCheck: assert 0
#####
# time series and traffic lights.
tsa = timeseriesAnalysis(
av[name]['modelFiles'],
av[name]['dataFile'],
dataType = name,
modelcoords = av[name]['modelcoords'],
modeldetails = av[name]['modeldetails'],
datacoords = av[name]['datacoords'],
datadetails = av[name]['datadetails'],
datasource = av[name]['datasource'],
model = av[name]['model'],
jobID = jobID,
layers = av[name]['layers'],
regions = av[name]['regions'],
metrics = av[name]['metrics'],
workingDir = shelvedir,
imageDir = imagedir,
grid = av[name]['modelgrid'],
gridFile = av[name]['gridFile'],
clean = False,
noNewFiles = True, # stops loading new files
)
amocshelve = tsa.shelvefn
#####
#
sh = shOpen(amocshelve)
readFiles = sh['readFiles']
modeldataD = sh['modeldata']
sh.close()
m = 'metricless'
r = 'regionless'
l = 'layerless'
modeldataDict = modeldataD[(r,l,m)]
times = sorted(modeldataDict.keys())
modeldata = [modeldataDict[t] for t in times]
substract1000time = False
if substract1000time:
times = [t-1000. for t in times]
if len(times)>120.:
filename = ukp.folder(imagedir)+'_'.join([name,jobID,])+'_first100yrs.png'
tmpt = times[:120]
tmpmd = modeldata[:120]
xlims= [tmpt[0],tmpt[-1]]
fig = pyplot.figure()
ax = fig.add_subplot(111)
#if len(tmpmd)>30:
# smoothing = tsp.movingaverage2(tmpmd,window_len=30,window='hanning',extrapolate='axially')
# pyplot.plot(tmpt,tmpmd, c='b',ls='-',lw=0.2)
# pyplot.plot(tmpt,smoothing,c='b',ls='-',lw=2,label='Model')
#else:
pyplot.plot(tmpt,tmpmd,c='b',ls='-',lw=2,label='Model',)
if np.max(tmpmd)>20.:
pyplot.ylim([0.,np.max(tmpmd)*1.1])
else: pyplot.ylim([0.,20.])
pyplot.xlim(xlims)
pyplot.ylabel('AMOC, Sv')
pyplot.xlabel('Year')
#pyplot.axhline(y='',c='k',ls='-',lw=1,label = 'data')
print "timeseriesPlots:\tsimpletimeseries:\tSaving:" , filename
pyplot.savefig(filename )
pyplot.close()
filename = ukp.folder(imagedir)+'_'.join([name,jobID,])+'.png'
xlims= [times[0],times[-1]]
fig = pyplot.figure()
ax = fig.add_subplot(111)
if len(modeldata)>30:
smoothing = tsp.movingaverage2(modeldata,window_len=30,window='hanning',extrapolate='axially')
pyplot.plot(times,modeldata, c='b',ls='-',lw=0.2,label='Model1')
pyplot.plot(times,smoothing,c='b',ls='-',lw=2,label='Model2')
else:
pyplot.plot(times,modeldata,c='b',ls='-',lw=1,label='Model',)
if np.max(modeldata)>20.:
pyplot.ylim([0.,np.max(modeldata)*1.1])
else: pyplot.ylim([0.,20.])
pyplot.xlim(xlims)
pyplot.ylabel('AMOC, Sv')
pyplot.xlabel('Year')
#pyplot.axhline(y='',c='k',ls='-',lw=1,label = 'data')
print "timeseriesPlots:\tsimpletimeseries:\tSaving:" , filename
pyplot.savefig(filename )
pyplot.close()
def main():
try: jobID = argv[1]
except:
jobID = "u-ag543"
if 'debug' in argv[1:]: suite = 'debug'
analysis_omz(jobID =jobID, )#clean=1)
#if suite == 'all':
#analysis_timeseries(jobID =jobID,analysisSuite='FullDepth', z_component = 'FullDepth',)#clean=1)
if __name__=="__main__":
main()