-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ranking_model.py
145 lines (116 loc) · 4.09 KB
/
eval_ranking_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import json
import os
import numpy as np
import scipy
import torch
import torch.nn as nn
import transformers
from sklearn.metrics import accuracy_score, f1_score
from tensorboardX import SummaryWriter
from torch import Tensor
from torch.optim.adamw import AdamW
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from transformers import BertTokenizer
from preprocess_dataset import get_dd_corpus
from selection_model import TransformerRanker
from utils import (RankingDataset, get_uttr_token, load_model, set_random_seed)
def main(args):
set_random_seed(42)
device = torch.device("cuda")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
UTTR_TOKEN = get_uttr_token()
special_tokens_dict = {"additional_special_tokens": [UTTR_TOKEN]}
tokenizer.add_special_tokens(special_tokens_dict)
model_list = []
seed_list = [42] if args.model != "ensemble" else [42, 43, 44, 45, 46]
for seed in seed_list:
model = TransformerRanker(len(tokenizer), 256, 8, 3)
model = load_model(model, args.model_path.format(seed), args.t_epoch, len(tokenizer))
model.to(device)
model_list.append(model)
print("ranking testset")
txt_fname = (
"./data/ranking/text_ranking_{}.pck"
)
tensor_fname = (
"./data/ranking/tensor_ranking_{}.pck"
)
raw_dataset = get_dd_corpus(
"validation" if args.setname == "valid" else args.setname
)
test_dataset = RankingDataset(
raw_dataset,
tokenizer,
args.setname,
300,
UTTR_TOKEN,
txt_fname,
tensor_fname,
)
total_item_list = []
total_corrects = 0
total_len = 0
testloader = DataLoader(test_dataset, batch_size=128, drop_last=True)
with torch.no_grad():
for step, batch in enumerate(tqdm(testloader)):
c_ids_list, r_ids_list = (batch[0], batch[1])
bs = c_ids_list.shape[0]
c_ids_list = c_ids_list.reshape(bs, 300).to(device)
r_ids_list = r_ids_list.reshape(bs, 300).to(device)
output = model(c_ids_list, r_ids_list)
label = [i for i in range(bs)]
label = torch.tensor(label).to(device)
max_score, max_idxs = torch.max(output, 1)
correct_predictions = (max_idxs == label).sum()
total_corrects += correct_predictions
total_len += bs
total_item_list.append(
{
"pred_acc": total_corrects/total_len,
}
)
with open(args.output_fname, "w") as f:
for l in total_item_list:
json.dump(l, f)
f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("--corpus", default="dd", choices=["persona", "dd"])
parser.add_argument("--setname", default="test", choices=["valid", "test"])
parser.add_argument("--log_path", type=str, default="result")
parser.add_argument(
"--model_path",
type=str,
default="./logs/cc_select_batch12_candi5_seed{}/model",
)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--t_epoch", type=int, default=29)
parser.add_argument(
"--model",
default="ranking",
)
parser.add_argument(
"--direct_threshold",
type=float,
default=-1,
help="baseline threshold",
)
parser.add_argument(
"--random_seed",
type=int,
default=42,
help="random seed during training",
)
args = parser.parse_args()
assert len(args.model_path.split("/")) == 4
args.exp_name = f"{args.model}-{args.setname}"
args.log_path = os.path.join(args.log_path, args.corpus)
os.makedirs(args.log_path, exist_ok=True)
args.output_fname = os.path.join(args.log_path, args.exp_name) + ".json"
print("\n", args.output_fname, "\n")
assert not os.path.exists(args.output_fname)
os.makedirs(os.path.dirname(args.output_fname), exist_ok=True)
main(args)