-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_selection_model.py
201 lines (172 loc) · 6.47 KB
/
eval_selection_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import json
import os
import numpy as np
import scipy
import torch
import torch.nn as nn
import transformers
from sklearn.metrics import accuracy_score, f1_score
from tensorboardX import SummaryWriter
from torch import Tensor
from torch.nn import functional as F
from torch.nn.modules.loss import CrossEntropyLoss
from torch.optim.adamw import AdamW
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from transformers import (BertModel, BertTokenizer)
from preprocess_dataset import get_dd_corpus
from selection_model import BertSelect
from utils import (SelectionDataset, get_uttr_token, load_model, recall_x_at_k, set_random_seed)
def main(args):
set_random_seed(42)
device = torch.device("cuda")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
UTTR_TOKEN = get_uttr_token()
special_tokens_dict = {"additional_special_tokens": [UTTR_TOKEN]}
tokenizer.add_special_tokens(special_tokens_dict)
model_list = []
seed_list = [42] if args.model != "ensemble" else [42, 43, 44, 45, 46]
for seed in seed_list:
bert = BertModel.from_pretrained("bert-base-uncased")
bert.resize_token_embeddings(len(tokenizer))
model = BertSelect(bert)
# model = torch.nn.DataParallel(model)
model = load_model(model, args.model_path.format(seed), args.t_epoch, len(tokenizer))
model.to(device)
model_list.append(model)
print("usual testset")
txt_fname = (
"./data/selection/text_cand{}".format(args.retrieval_candidate_num)
+ "_{}.pck"
)
tensor_fname = (
"./data/selection/tensor_cand{}".format(args.retrieval_candidate_num)
+ "_{}.pck"
)
raw_dataset = get_dd_corpus(
"validation" if args.setname == "valid" else args.setname
)
selection_dataset = SelectionDataset(
raw_dataset,
tokenizer,
args.setname,
300,
args.retrieval_candidate_num,
UTTR_TOKEN,
txt_fname,
tensor_fname,
)
total_item_list = []
dataset_length = len(selection_dataset)
for idx in tqdm(range(dataset_length)):
pred_list_for_current_context = []
uncertainty_list_for_current_context = []
sample = [el[idx] for el in selection_dataset.feature]
assert len(sample) == 2 * args.retrieval_candidate_num + 1
ids = torch.stack([sample[i] for i in range(args.retrieval_candidate_num)]).to(device)
mask = torch.stack(
[
sample[i + args.retrieval_candidate_num]
for i in range(args.retrieval_candidate_num)
]
).to(device)
prediction_list = []
with torch.no_grad():
if args.model == "mcdrop":
assert len(model_list) == 1
model = model_list[0]
model.train()
for forward_pass in range(5):
with torch.no_grad():
prediction_list.append(
[float(el) for el in model(ids, mask).cpu().numpy()]
)
prediction_list = np.array(prediction_list)
pred_list_for_current_context = np.mean(prediction_list, 0)
uncertainty_list_for_current_context = np.var(prediction_list, 0)
else:
assert args.model in ["ensemble", "select", "nopt"]
for model in model_list:
with torch.no_grad():
prediction_list.append(
[float(el) for el in model(ids, mask).cpu().numpy()]
)
prediction_list = np.array(prediction_list)
pred_list_for_current_context = np.mean(prediction_list, 0)
uncertainty_list_for_current_context = np.var(prediction_list, 0)
pred_list_for_current_context = [
float(el) for el in pred_list_for_current_context
]
uncertainty_list_for_current_context = [
float(el) for el in uncertainty_list_for_current_context
]
assert (
len(pred_list_for_current_context)
== len(uncertainty_list_for_current_context)
== args.retrieval_candidate_num
)
total_item_list.append(
{
"pred": pred_list_for_current_context,
"uncertainty": uncertainty_list_for_current_context,
}
)
with open(args.output_fname, "w") as f:
for l in total_item_list:
json.dump(l, f)
f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("--corpus", default="dd", choices=["persona", "dd"])
parser.add_argument("--setname", default="test", choices=["valid", "test"])
parser.add_argument("--log_path", type=str, default="result")
parser.add_argument("--curriculum", type=str, default="cc")
parser.add_argument("--t_epoch", type=int, default=0)
parser.add_argument(
"--model_path",
type=str,
default="./logs/cc_select_batch12_candi5_seed{}/model",
)
parser.add_argument(
"--retrieval_candidate_num",
type=int,
default=10,
)
parser.add_argument(
"--model",
default="select",
help="compared method",
choices=["select", "mcdrop", "ensemble", "nopt", "uw"],
)
parser.add_argument(
"--direct_threshold",
type=float,
default=-1,
help="baseline threshold",
)
parser.add_argument(
"--random_seed",
type=int,
default=42,
help="random seed during training",
)
parser.add_argument(
"--model_num_candidates",
type=int,
default=5,
help="model specification",
)
args = parser.parse_args()
assert len(args.model_path.split("/")) == 4
args.exp_name = f"{args.curriculum}-{args.model}-{args.model_num_candidates}-candi{args.retrieval_candidate_num}-{args.setname}"
args.log_path = os.path.join(args.log_path, args.corpus)
os.makedirs(args.log_path, exist_ok=True)
args.output_fname = os.path.join(args.log_path, args.exp_name) + ".json"
print("\n", args.output_fname, "\n")
assert not os.path.exists(args.output_fname)
os.makedirs(os.path.dirname(args.output_fname), exist_ok=True)
if args.model == "nopt":
assert "randinit" in args.model_path
main(args)