-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathselection_model.py
87 lines (71 loc) · 3.24 KB
/
selection_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from numpy import float32
import torch
from torch import nn
from transformers import BertModel
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import math
# Response Ranking Model
class BertSelect(nn.Module):
def __init__(self, bert: BertModel):
super(BertSelect, self).__init__()
self.bert = bert
self.linear = torch.nn.Linear(768, 1, bias=False)
def forward(self, ids, mask):
output, _ = self.bert(ids, mask, return_dict=False)
cls_ = output[:, 0]
return self.linear(cls_)
def get_attention(self, ids, mask):
output = self.bert(ids, mask, return_dict=True, output_attentions=True)
prediction = self.linear(output["last_hidden_state"][:, 0])
return prediction, output["attentions"]
# Transformer-based Ranker for Curriculum Learning
# Paper: Dialogue Response Selection with Hierarchical Curriculum Learning
class TransformerRanker(nn.Module):
def __init__(self, ntoken: int, d_model: int, nhead: int, nlayers: int):
super(TransformerRanker, self).__init__()
self.c_encoder = TransformerModel(ntoken, d_model, nhead, nlayers)
self.r_encoder = TransformerModel(ntoken, d_model, nhead, nlayers)
def forward(self, c_ids, r_ids):
c_output = self.c_encoder(c_ids)
r_output = self.r_encoder(r_ids)
c_output = c_output[:, 0]
r_output = r_output[:, 0]
score = torch.matmul(c_output, torch.transpose(r_output, 0, 1))
return score
class TransformerModel(nn.Module):
def __init__(self, ntoken, d_model=256, nhead=8, nlayers=3, dropout=0.5):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(d_model, dropout)
encoder_layers = TransformerEncoderLayer(d_model, nhead)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, d_model)
self.d_model = d_model
self.init_weights()
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
src = self.encoder(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=300):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)