-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
472 lines (400 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import json
import os
import pickle
import random
import re
import numpy as np
import torch
from tqdm import tqdm
def brier_multi(targets, probs):
# https://stats.stackexchange.com/questions/403544/how-to-compute-the-brier-score-for-more-than-two-classes
targets, probs = np.array(targets), np.array(probs)
return np.mean(np.sum((probs - targets) ** 2, axis=1))
def make_tuple(exp):
assert "(" in exp and ")" in exp and exp.count(",") == 1
exp = [el.strip() for el in exp.strip()[1:-1].split(",")]
return exp
def set_random_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def recall_x_at_k(score_list, x, k, answer_index):
assert len(score_list) == x
sorted_score_index = np.array(score_list).argsort()[::-1]
assert answer_index in sorted_score_index
return int(answer_index in sorted_score_index[:k])
class SelectionDataset(torch.utils.data.Dataset):
def __init__(
self,
raw_dataset,
tokenizer,
setname: str,
max_seq_len: int = 300,
num_candidate: int = 10,
uttr_token: str = "[UTTR]",
txt_save_fname: str = None,
tensor_save_fname: str = None,
):
self.tokenizer = tokenizer
self.max_seq_len = max_seq_len
self.uttr_token = uttr_token
assert setname in ["train", "dev", "test"]
txt_save_fname, tensor_save_fname = (
txt_save_fname.format(setname),
tensor_save_fname.format(setname),
)
selection_dataset = self._get_selection_dataset(
raw_dataset, num_candidate, txt_save_fname
)
self.feature = self._tensorize_selection_dataset(
selection_dataset, tensor_save_fname, num_candidate
)
def __len__(self):
return len(self.feature[0])
def __getitem__(self, idx):
return tuple([el[idx] for el in self.feature])
def _tensorize_selection_dataset(
self, selection_dataset, tensor_save_fname, num_candidate
):
if os.path.exists(tensor_save_fname):
print(f"{tensor_save_fname} exist!")
with open(tensor_save_fname, "rb") as f:
return pickle.load(f)
print("make {}".format(tensor_save_fname))
ids_list = [[] for _ in range(num_candidate)]
masks_list = [[] for _ in range(num_candidate)]
labels = []
data_idx = [i for i in range(len(selection_dataset))]
print("data_idx_len: ", len(data_idx))
print("Tensorize...")
for sample_idx, sample in enumerate(tqdm(selection_dataset)):
assert len(sample) == 1 + num_candidate and all(
[isinstance(el, str) for el in sample]
)
context, candidates = sample[0], sample[1:]
assert len(candidates) == num_candidate
encoded = self.tokenizer(
[context] * num_candidate,
text_pair=candidates,
max_length=self.max_seq_len,
padding="max_length",
truncation=True,
return_tensors="pt",
)
encoded_ids, encoded_mask = encoded["input_ids"], encoded["attention_mask"]
assert len(encoded_ids) == len(encoded_mask) == num_candidate
for candi_idx in range(num_candidate):
ids_list[candi_idx].append(encoded_ids[candi_idx])
masks_list[candi_idx].append(encoded_mask[candi_idx])
labels.append(0)
assert len(list(set([len(el) for el in ids_list]))) == 1
assert len(list(set([len(el) for el in masks_list]))) == 1
ids_list = [torch.stack(el) for el in ids_list]
masks_list = [torch.stack(el) for el in masks_list]
labels = torch.tensor(labels)
data_idx = torch.tensor(data_idx)
data = ids_list + masks_list + [labels] + [data_idx]
assert len(data) == 2 + 2 * num_candidate
with open(tensor_save_fname, "wb") as f:
pickle.dump(data, f)
return data
def _get_selection_dataset(
self, raw_dataset, num_candidate, txt_save_fname
):
print("Selection filename: {}".format(txt_save_fname))
if os.path.exists(txt_save_fname):
print(f"{txt_save_fname} exist!")
with open(txt_save_fname, "rb") as f:
return pickle.load(f)
selection_dataset = self._make_selection_dataset(
raw_dataset, num_candidate
)
os.makedirs(os.path.dirname(txt_save_fname), exist_ok=True)
with open(txt_save_fname, "wb") as f:
pickle.dump(selection_dataset, f)
return selection_dataset
def _make_selection_dataset(
self, raw_dataset, num_candidate
):
"""
Returns:
datset: List of [context(str), positive_response(str), negative_response_1(str), (...) negative_response_(num_candidate-1)(str)]
"""
assert isinstance(raw_dataset, list) and all(
[isinstance(el, list) for el in raw_dataset]
)
print(f"Serialized selection not exist. Make new file...")
dataset = []
all_responses = []
for idx, conv in enumerate(tqdm(raw_dataset)):
slided_conversation = self._slide_conversation(conv)
# Check the max sequence length
for single_conv in slided_conversation:
assert len(single_conv) == 2 and all(
[isinstance(el, str) for el in single_conv]
)
concat_single_conv = " ".join(single_conv)
if len(self.tokenizer.tokenize(concat_single_conv)) + 3 <= 300:
dataset.append(single_conv)
all_responses.extend([el[1] for el in slided_conversation])
for idx, el in enumerate(dataset):
sampled_random_negative = random.sample(all_responses, num_candidate)
if el[1] in sampled_random_negative:
sampled_random_negative.remove(el[1])
sampled_random_negative = sampled_random_negative[: num_candidate - 1]
dataset[idx].extend(sampled_random_negative)
assert len(dataset[idx]) == 1 + num_candidate
assert all([isinstance(txt, str) for txt in dataset[idx]])
return dataset
def _slide_conversation(self, conversation):
"""
multi-turn utterance로 이루어진 single conversation을 여러 개의 "context-response" pair로 만들어 반환
"""
assert isinstance(conversation, list) and all(
[isinstance(el, str) for el in conversation]
)
pairs = []
for idx in range(len(conversation) - 1):
context, response = conversation[: idx + 1], conversation[idx + 1]
pairs.append([self.uttr_token.join(context), response])
return pairs
# Constructing SelectionDataset with Corpus-Level Curriculum = SelectionDataset_CC
class SelectionDataset_CC(torch.utils.data.Dataset):
def __init__(
self,
raw_dataset,
tokenizer,
setname: str,
max_seq_len: int = 300,
num_candidate: int = 10,
uttr_token: str = "[UTTR]",
txt_save_fname: str = None,
tensor_save_fname: str = None,
ranking_fname: str = None
):
self.tokenizer = tokenizer
self.max_seq_len = max_seq_len
self.uttr_token = uttr_token
assert setname in ["train", "dev", "test"]
cc_txt_save_fname, cc_tensor_save_fname = (
txt_save_fname.format(setname+"_cc"),
tensor_save_fname.format(setname+"_cc"),
)
txt_save_fname, tensor_save_fname = (
txt_save_fname.format(setname),
tensor_save_fname.format(setname),
)
selection_cc_dataset = self._get_selection_cc_dataset(
raw_dataset, num_candidate, tensor_save_fname, ranking_fname, cc_txt_save_fname
)
self.feature = self._tensorize_selection_cc_dataset(
selection_cc_dataset, tensor_save_fname, num_candidate, cc_tensor_save_fname
)
def __len__(self):
return len(self.feature[0])
def __getitem__(self, idx):
return tuple([el[idx] for el in self.feature])
def _tensorize_selection_cc_dataset(
self, selection_cc_dataset, tensor_save_fname, num_candidate, cc_tensor_save_fname
):
if os.path.exists(cc_tensor_save_fname):
print(f"{cc_tensor_save_fname} exist!")
with open(cc_tensor_save_fname, "rb") as f:
return pickle.load(f)
print("make {}".format(cc_tensor_save_fname))
assert len(selection_cc_dataset) == 1 + 2 * num_candidate
with open(cc_tensor_save_fname, "wb") as f:
pickle.dump(selection_cc_dataset, f)
return selection_cc_dataset
def _get_selection_cc_dataset(
self, raw_dataset, num_candidate, tensor_save_fname, ranking_fname, cc_txt_save_fname
):
if os.path.exists(cc_txt_save_fname):
print(f"{cc_txt_save_fname} exist!")
with open(cc_txt_save_fname, "rb") as f:
return pickle.load(f)
assert os.path.exists(tensor_save_fname)
assert os.path.exists(ranking_fname)
print("Origin Selection filename: {}".format(tensor_save_fname))
with open(tensor_save_fname, "rb") as f_o:
origin_dataset = pickle.load(f_o)
print("Ranking filename: {}".format(ranking_fname))
with open(ranking_fname, "rb") as f_r:
ranking_score = pickle.load(f_r)
cc_d_score, cc_d_ranking = ranking_score
cc_d_ranking = cc_d_ranking.reshape(-1)
selection_cc_dataset = []
for i, data in enumerate(origin_dataset):
temp_data = None
# data_idx or labels
if i == len(origin_dataset)-1 or i == len(origin_dataset)-2:
temp_data = data[cc_d_ranking]
else:
temp_data = data[cc_d_ranking, :]
selection_cc_dataset.append(temp_data)
assert len(origin_dataset) == len(selection_cc_dataset)
with open(cc_txt_save_fname, "wb") as f:
pickle.dump(selection_cc_dataset, f)
return selection_cc_dataset
# Constructing RankingDataset for training trainsformer ranker
class RankingDataset(torch.utils.data.Dataset):
def __init__(
self,
raw_dataset,
tokenizer,
setname: str,
max_seq_len: int = 300,
uttr_token: str = "[UTTR]",
txt_save_fname: str = None,
tensor_save_fname: str = None,
):
self.tokenizer = tokenizer
self.max_seq_len = max_seq_len
self.uttr_token = uttr_token
assert setname in ["train", "dev", "test"]
txt_save_fname, tensor_save_fname = (
txt_save_fname.format(setname),
tensor_save_fname.format(setname),
)
ranking_dataset = self._get_ranking_dataset(
raw_dataset, txt_save_fname
)
self.feature = self._tensorize_ranking_dataset(
ranking_dataset, tensor_save_fname
)
def __len__(self):
return len(self.feature[0])
def __getitem__(self, idx):
return tuple([el[idx] for el in self.feature])
def _tensorize_ranking_dataset(
self, ranking_dataset, tensor_save_fname
):
if os.path.exists(tensor_save_fname):
print(f"{tensor_save_fname} exist!")
with open(tensor_save_fname, "rb") as f:
return pickle.load(f)
print("make {}".format(tensor_save_fname))
c_ids_list = [[]]
r_ids_list = [[]]
print("Tensorize...")
for s_idx, sample in enumerate(tqdm(ranking_dataset)):
assert len(sample) == 2 and all(
[isinstance(el, str) for el in sample]
)
context, response = sample[0], sample[1]
c_encoded = self.tokenizer(
context,
max_length=self.max_seq_len,
padding="max_length",
truncation=True,
return_tensors="pt",
)
r_encoded = self.tokenizer(
response,
max_length=self.max_seq_len,
padding="max_length",
truncation=True,
return_tensors="pt",
)
c_encoded_ids, r_encoded_ids = c_encoded["input_ids"], r_encoded["input_ids"]
c_ids_list[0].append(c_encoded_ids)
r_ids_list[0].append(r_encoded_ids)
c_ids_list = [torch.stack(el) for el in c_ids_list]
r_ids_list = [torch.stack(el) for el in r_ids_list]
data_idx = [i for i in range(len(ranking_dataset))]
data_idx = torch.tensor(data_idx)
data = c_ids_list + r_ids_list + data_idx
assert len(data) == 3
with open(tensor_save_fname, "wb") as f:
pickle.dump(data, f)
return data
def _get_ranking_dataset(
self, raw_dataset, txt_save_fname
):
print("Ranking filename: {}".format(txt_save_fname))
if os.path.exists(txt_save_fname):
print(f"{txt_save_fname} exist!")
with open(txt_save_fname, "rb") as f:
return pickle.load(f)
ranking_dataset = self._make_ranking_dataset(raw_dataset)
os.makedirs(os.path.dirname(txt_save_fname), exist_ok=True)
with open(txt_save_fname, "wb") as f:
pickle.dump(ranking_dataset, f)
return ranking_dataset
def _make_ranking_dataset(self, raw_dataset):
"""
Returns:
datset: List of [context(str), positive_response(str)]
"""
assert isinstance(raw_dataset, list) and all(
[isinstance(el, list) for el in raw_dataset]
)
print(f"Serialized selection not exist. Make new file...")
dataset = []
for conv in tqdm(raw_dataset):
slided_conversation = self._slide_conversation(conv)
# Check the max sequence length
for single_conv in slided_conversation:
assert len(single_conv) == 2 and all(
[isinstance(el, str) for el in single_conv]
)
concat_single_conv = " ".join(single_conv)
if len(self.tokenizer.tokenize(concat_single_conv)) + 3 <= 300:
dataset.append(single_conv)
return dataset
def _slide_conversation(self, conversation):
"""
multi-turn utterance로 이루어진 single conversation을 여러 개의 "context-response" pair로 만들어 반환
"""
assert isinstance(conversation, list) and all(
[isinstance(el, str) for el in conversation]
)
pairs = []
for idx in range(len(conversation) - 1):
context, response = conversation[: idx + 1], conversation[idx + 1]
pairs.append([self.uttr_token.join(context), response])
return pairs
def get_uttr_token():
return "[UTTR]"
def get_nota_token():
return "[NOTA]"
def dump_config(args):
with open(os.path.join(args.exp_path, "config.json"), "w") as f:
json.dump(vars(args), f)
def write2tensorboard(writer, value, setname, step):
for k, v in value.items():
writer.add_scalars(k, {setname: v}, step)
writer.flush()
def save_model(model, epoch, model_path):
try:
torch.save(
model.module.state_dict(),
os.path.join(model_path, f"epoch-{epoch}.pth"),
)
except:
torch.save(
model.state_dict(),
os.path.join(model_path, f"epoch-{epoch}.pth"),
)
def load_model(model, model_path, epoch, len_tokenizer):
if "select" in model_path:
model.bert.resize_token_embeddings(len_tokenizer)
model.load_state_dict(torch.load(model_path + f"/epoch-{epoch}.pth"))
return model
def make_random_negative_for_multi_ref(multiref_original, num_neg=30):
for idx, item in enumerate(multiref_original):
context, responses = item
sample = random.sample(range(len(multiref_original)), num_neg + 1)
if idx in sample:
sample.remove(idx)
else:
sample = sample[:-1]
responses = [multiref_original[sample_idx][1] for sample_idx in sample]
responses = [el for el1 in responses for el in el1]
assert all([isinstance(el, str) for el in responses])
negative = random.sample(responses, num_neg)
multiref_original[idx].append(negative)
return multiref_original