-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.r
126 lines (105 loc) · 4.88 KB
/
experiment.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
###
# Perform bayesian variable selection to obtain inclusion probabilities.
###
library(optparse) # parse script arguments in a pythonic way
source("./src/models/bayesian_model_averaging/oda_bma/calc-modelprobs.r", chdir=TRUE)
source("./src/models/bayesian_model_averaging/oda_bma/oda.bma.r", chdir=TRUE)
# configure parser and parse arguments
optionList = list(
make_option(c("--dataset"),
type="character", default="./data/interim/20140721000003_myocardial_ischemia_16_impType_MI_nIter_20_label.csv", help="Path to the dataset file", metavar="character"),
make_option(c("--label"),
type="character", default="diagnostic_outcome", help="Label of the dataset", metavar="character"),
make_option(c("--niter"),
type="integer", default=1000, help="The number of iterations to perform", metavar = "integer"),
make_option(c("--burnIn"),
type="integer", default=500, help="The number of iterations we discard to tune the initial probabilities (burn-in)", metavar = "integer"),
make_option(c("--lambda"),
type="double", default=1, help="lambda", metavar = "double"),
make_option(c("--coeffShrink"),
type="double", default=0, help="regularization through coefficient shrinking", metavar = "double"),
make_option(c("--ridgeLassoBlend"),
type="double", default=0, help="Blend L2 regularization (ridge) with L1 regularization (LASSO). regularization = (1-ridgeLassoBlend) * ridge + ridgeLassoBlend * LASSO ", metavar = "double"),
make_option(c("--appendix"),
type="character", help="Optional repetition id of the experiment to explore convergence across multiple chains", metavar = "character"))
# parse script arguments
optParser <- OptionParser(option_list=optionList)
opt <- parse_args(optParser)
if (is.null(opt$dataset)){ # print and stop script if dataset file path is missing
print_help(optParser)
stop("Missing dataset file argument")
}
datasetPath <- opt$dataset
iterationQty <- opt$niter
burnIn <- opt$burnIn
lambda <- opt$lambda
coeffShrink <- opt$coeffShrink
ridgeLassoBlend <- opt$ridgeLassoBlend
label <- opt$label
if (is.null(opt$appendix)){
appendix <- ""
} else {
appendix <- paste0("_", opt$appendix)
}
# load data from csv
cat("Loading data from csv...")
miData<-read.csv(opt$dataset, sep=",", header=TRUE)
cat("...Done.\n")
# Calculate oda inclusion probabilities for ICD-10
cat("Sanity check for dataset:\n") # check if dimensions and names of matrix look sane
print(dim(miData)) # 3424 15
print(names(miData))
print("---------------------")
# extract feature names
columnNames <- colnames(miData)
isNotLabel <- function(x){x != label}
featureNames <- Filter(isNotLabel, columnNames)
print("Features:")
print(featureNames)
print("Label:")
print(label)
features <- subset(miData, select=featureNames) # extract features
labels <- miData[label] # extract label
print(paste0("Sampling models using oda-bma method to estimate inclusion probabilities of features for ", iterationQty, " iterations..."))
odaResults <- oda.bma(x = features, y = labels, niter = iterationQty, burnin = burnIn, lambda = lambda, coeffShrink=coeffShrink, ridgeLassoBlend=ridgeLassoBlend, model = "probit", prior = "normal")
# print(odaResults$incprob.rb)
# print(odaResults$betabma)
# print(odaResults$incprob)
# print(odaResults$gamma)
# print(odaResults$odds)
print("...Done.\n")
print("Calculating posterior probability of unsampled models...")
# matrix of unique models from ODA
gamma.u <- unique(odaResults$gamma[-c(1:burnIn),])
# vector of RB estimates of model probabilities corresponding to models in gamma.u
probest <- modelprobs.rb(n.unique=nrow(gamma.u),
niter=nrow(odaResults$incprob[-c(1:burnIn),]),
p = ncol(gamma.u),
gammaunique=t(gamma.u),
probmat.oda = t(odaResults$incprob[-c(1:burnIn),]))
print("...Done.\n")
print("Results:\n")
print("----------")
print("Estimated posterior probability of unsampled models (= the size of the unsampled model space, should be < 0.05, 0.025 or 0.01):")
print(1 - sum(probest))
# create a new dataset for inclusion probabilities
incprobsDf <- data.frame(matrix(ncol = length(featureNames), nrow = 0))
colnames(incprobsDf) <- featureNames
incprobsDf[1,] <- odaResults$incprob.rb
print("Inclusion probabilities of features:")
print(incprobsDf)
print("----------")
cat("Writing dataset to file...")
fileName <- sub(pattern = "(.*?)\\.[a-zA-Z]*$", replacement = "\\1", basename(datasetPath))
# prepare dataset store path
path <- 'data/processed/'
if(!grepl("[0-9]{14}", fileName)){ # try to find a timestamp with 4 digit year and each 2 digits for month, day, hour, minute, second
# write imputed data to file with timestamp
cat("Writing imputed data to file...")
now <- Sys.time()
path <- paste0(path, format(now, "%Y%m%d%H%M%S"), "_")
}
path <- paste0(path, fileName, "_niter_", iterationQty, "_burnIn_", burnIn, "_ridgeLasso_", ridgeLassoBlend, "_shrink_", coeffShrink, "_incprobs", appendix, ".csv")
print(path)
write.csv(incprobsDf, file=path, row.names = FALSE)
cat("...Done.")