forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_infer.py
248 lines (216 loc) Β· 7.91 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import asyncio
import importlib.util
import os
import pandas as pd
from evaluation.integration_tests.tests.base import BaseIntegrationTest, TestResult
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
FAKE_RESPONSES = {
'CodeActAgent': codeact_user_response,
}
def get_config(
metadata: EvalMetadata,
instance_id: str,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'docker'),
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
# use default base_container_image
enable_auto_lint=True,
use_host_network=False,
timeout=300,
# Add platform to the sandbox config to solve issue 4401
platform='linux/amd64',
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
keep_runtime_alive=False,
remote_runtime_init_timeout=3600,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
# debug
debug=True,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance_id
)
)
agent_config = AgentConfig(
codeact_enable_jupyter=True,
codeact_enable_browsing=True,
codeact_enable_llm_editor=False,
)
config.set_agent_config(agent_config)
return config
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata, instance.instance_id)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir)
else:
logger.info(
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n'
)
# =============================================
# import test instance
# =============================================
instance_id = instance.instance_id
spec = importlib.util.spec_from_file_location(instance_id, instance.file_path)
test_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(test_module)
assert hasattr(
test_module, 'Test'
), f'Test module {instance_id} does not have a Test class'
test_class: type[BaseIntegrationTest] = test_module.Test
assert issubclass(
test_class, BaseIntegrationTest
), f'Test class {instance_id} does not inherit from BaseIntegrationTest'
instruction = test_class.INSTRUCTION
# =============================================
# create sandbox and run the agent
# =============================================
runtime: Runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
test_class.initialize_runtime(runtime)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
)
)
if state is None:
raise ValueError('State should not be None.')
# # =============================================
# # result evaluation
# # =============================================
histories = state.history
# some basic check
logger.info(f'Total events in history: {len(histories)}')
assert len(histories) > 0, 'History should not be empty'
test_result: TestResult = test_class.verify_result(runtime, histories)
metrics = state.metrics.get() if state.metrics else None
finally:
runtime.close()
# Save the output
output = EvalOutput(
instance_id=str(instance.instance_id),
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=[event_to_dict(event) for event in histories],
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result.model_dump(),
)
return output
def load_integration_tests() -> pd.DataFrame:
"""Load tests from python files under ./tests"""
cur_dir = os.path.dirname(os.path.abspath(__file__))
test_dir = os.path.join(cur_dir, 'tests')
test_files = [
os.path.join(test_dir, f)
for f in os.listdir(test_dir)
if f.startswith('t') and f.endswith('.py')
]
df = pd.DataFrame(test_files, columns=['file_path'])
df['instance_id'] = df['file_path'].apply(
lambda x: os.path.basename(x).rstrip('.py')
)
return df
if __name__ == '__main__':
args = parse_arguments()
integration_tests = load_integration_tests()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'integration_tests',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
# Parse dataset IDs if provided
eval_ids = None
if args.eval_ids:
eval_ids = str(args.eval_ids).split(',')
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n')
instances = prepare_dataset(
integration_tests,
output_file,
args.eval_n_limit,
eval_ids=eval_ids,
)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
)
df = pd.read_json(output_file, lines=True, orient='records')
# record success and reason for failure for the final report
df['success'] = df['test_result'].apply(lambda x: x['success'])
df['reason'] = df['test_result'].apply(lambda x: x['reason'])
logger.info('-' * 100)
logger.info(
f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})'
)
logger.info(
'\nEvaluation Results:'
+ '\n'
+ df[['instance_id', 'success', 'reason']].to_string(index=False)
)
logger.info('-' * 100)
# record cost for each instance, with 3 decimal places
df['cost'] = df['metrics'].apply(lambda x: round(x['accumulated_cost'], 3))
logger.info(f'Total cost: USD {df["cost"].sum():.2f}')
report_file = os.path.join(metadata.eval_output_dir, 'report.md')
with open(report_file, 'w') as f:
f.write(
f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})\n'
)
f.write(f'\nTotal cost: USD {df["cost"].sum():.2f}\n')
f.write(
df[['instance_id', 'success', 'reason', 'cost']].to_markdown(index=False)
)