-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmodel.py
59 lines (50 loc) · 1.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from torch import nn
import torch.nn.functional as F
from transformers import (
RobertaForSequenceClassification,
AutoTokenizer,
BertForSequenceClassification,
)
class BertModel(nn.Module):
def __init__(self, model_name, requires_grad=True):
super(BertModel, self).__init__()
self.bert = RobertaForSequenceClassification.from_pretrained(
model_name, num_labels=2
)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False)
self.requires_grad = requires_grad
for param in self.bert.parameters():
param.requires_grad = requires_grad # Each parameter requires gradient
def forward(self, batch_seqs, batch_seq_masks, batch_seq_segments, labels):
loss, logits = self.bert(
input_ids=batch_seqs,
attention_mask=batch_seq_masks,
token_type_ids=batch_seq_segments,
labels=labels,
)[:2]
if labels is None:
return logits
probabilities = nn.functional.softmax(logits, dim=-1)
return loss, logits, probabilities
class HiddenLayer(nn.Module):
def __init__(self, input_size, output_size):
super(HiddenLayer, self).__init__()
self.fc = nn.Linear(input_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
return self.relu(self.fc(x))
class MLP(nn.Module):
def __init__(self, in_size=1, hidden_size=100, num_layers=1):
super(MLP, self).__init__()
self.first_hidden_layer = HiddenLayer(in_size, hidden_size)
self.rest_hidden_layers = nn.Sequential(
*[HiddenLayer(hidden_size, hidden_size) for _ in range(num_layers - 1)]
)
self.output_layer = nn.Linear(hidden_size, 1)
def forward(self, x):
x = self.first_hidden_layer(x)
x = self.rest_hidden_layers(x)
x = F.dropout(x, p=0.2, training=self.training)
x = self.output_layer(x)
return torch.sigmoid(x) * 2