-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTestExtrCompute.v
89 lines (62 loc) · 1.96 KB
/
TestExtrCompute.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
(** Mutual recursion *)
Fixpoint even n :=
match n with O => true | S n => odd n end
with odd (n:nat) :=
match n with O => false | S n => even n end.
Definition testeven := even 10.
(** Record and projections *)
Record reco := { a : nat; h : a <> 0; b : bool }.
Definition use_reco t := if t.(b) then t.(a) else 0.
Definition mk_reco a (H:a<>0) := Build_reco a H true.
Definition match_reco t :=
match t with Build_reco x _ _ => x end.
Definition match_reco2 t :=
match t with Build_reco x _ y => if y then x else 0 end.
Lemma ten_nz : 10<>0. easy. Qed.
Definition ex_reco := mk_reco 10 ten_nz.
Definition test_reco :=
use_reco ex_reco + match_reco ex_reco + match_reco2 ex_reco.
(** Coinduction *)
CoInductive stream (A:Type) : Type :=
Cons : A -> stream A -> stream A.
Definition hd {A} (x:stream A) :=
match x with
| Cons _ a _ => a
end.
Definition tl {A} (x:stream A) :=
match x with
| Cons _ _ s => s
end.
CoFixpoint map {A B} (f:A->B) (x:stream A) :=
Cons _ (f (hd x)) (map f (tl x)).
Fixpoint nth {A} n (x:stream A) :=
match n with
| O => hd x
| S n => nth n (tl x)
end.
CoFixpoint seq n := Cons _ n (seq (S n)).
Definition nats := seq O.
Definition test_stream := nth 10 (map S nats).
Add Rec LoadPath "./native" as ExtractionCompute.
Add Rec LoadPath "./bytecode" as ExtractionCompute.
Require ExtractionCompute.
Extraction Compute testeven.
Extraction Compute test_reco.
Extraction Compute test_stream.
Require Import ZArith.
Extraction Compute (Z.sqrt (2^400)).
Fixpoint nArrow n : Type :=
match n with
| 0 => nat
| S n => nat -> nArrow n
end.
Fixpoint nSum_acc n acc : nArrow n :=
match n with
| 0 => acc
| S m => (fun a => nSum_acc m (acc+a))
end.
Definition nSum n : nArrow n := nSum_acc n 0.
Extraction Compute ((nSum 2) 1 3). (* computes 1+3=4 *)
Extraction Compute ((nSum 5) 1 3 5 7 9). (* computes 1+3+5+7+9=25 *)
Require List.
Extraction Compute (List.map S (List.seq 10 10 ++ List.seq 50 10))%list.